Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Inner product space
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== ===Real and complex numbers=== Among the simplest examples of inner product spaces are <math>\R</math> and <math>\Complex.</math> The [[real number]]s <math>\R</math> are a vector space over <math>\R</math> that becomes an inner product space with arithmetic multiplication as its inner product: <math display=block>\langle x, y \rangle := x y \quad \text{ for } x, y \in \R.</math> The [[complex number]]s <math>\Complex</math> are a vector space over <math>\Complex</math> that becomes an inner product space with the inner product <math display=block>\langle x, y \rangle := x \overline{y} \quad \text{ for } x, y \in \Complex.</math> Unlike with the real numbers, the assignment <math>(x, y) \mapsto x y</math> does {{em|not}} define a complex inner product on <math>\Complex.</math> ===Euclidean vector space=== More generally, the [[Real coordinate space|real <math>n</math>-space]] <math>\R^n</math> with the [[dot product]] is an inner product space, an example of a [[Euclidean vector space]]. <math display=block> \left\langle \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \right\rangle = x^\textsf{T} y = \sum_{i=1}^n x_i y_i = x_1 y_1 + \cdots + x_n y_n, </math> where <math>x^{\operatorname{T}}</math> is the [[transpose]] of <math>x.</math> A function <math>\langle \,\cdot, \cdot\, \rangle : \R^n \times \R^n \to \R</math> is an inner product on <math>\R^n</math> if and only if there exists a [[Symmetric matrix|symmetric]] [[positive-definite matrix]] <math>\mathbf{M}</math> such that <math>\langle x, y \rangle = x^{\operatorname{T}} \mathbf{M} y</math> for all <math>x, y \in \R^n.</math> If <math>\mathbf{M}</math> is the [[identity matrix]] then <math>\langle x, y \rangle = x^{\operatorname{T}} \mathbf{M} y</math> is the dot product. For another example, if <math>n = 2</math> and <math>\mathbf{M} = \begin{bmatrix} a & b \\ b & d \end{bmatrix}</math> is positive-definite (which happens if and only if <math>\det \mathbf{M} = a d - b^2 > 0</math> and one/both diagonal elements are positive) then for any <math>x := \left[x_1, x_2\right]^{\operatorname{T}}, y := \left[y_1, y_2\right]^{\operatorname{T}} \in \R^2,</math> <math display=block>\langle x, y \rangle := x^{\operatorname{T}} \mathbf{M} y = \left[x_1, x_2\right] \begin{bmatrix} a & b \\ b & d \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = a x_1 y_1 + b x_1 y_2 + b x_2 y_1 + d x_2 y_2.</math> As mentioned earlier, every inner product on <math>\R^2</math> is of this form (where <math>b \in \R, a > 0</math> and <math>d > 0</math> satisfy <math>a d > b^2</math>). ===Complex coordinate space=== The general form of an inner product on <math>\Complex^n</math> is known as the [[Hermitian form]] and is given by <math display=block>\langle x, y \rangle = y^\dagger \mathbf{M} x = \overline{x^\dagger \mathbf{M} y},</math> where <math>M</math> is any [[Hermitian matrix|Hermitian]] [[positive-definite matrix]] and <math>y^{\dagger}</math> is the [[conjugate transpose]] of <math>y.</math> For the real case, this corresponds to the dot product of the results of directionally-different [[Scaling (geometry)|scaling]] of the two vectors, with positive [[scale factor]]s and orthogonal directions of scaling. It is a [[Weight function|weighted-sum]] version of the dot product with positive weights—up to an orthogonal transformation. ===Hilbert space=== The article on [[Hilbert spaces]] has several examples of inner product spaces, wherein the metric induced by the inner product yields a [[complete metric space]]. An example of an inner product space which induces an incomplete metric is the space <math>C([a, b])</math> of continuous complex valued functions <math>f</math> and <math>g</math> on the interval <math>[a, b].</math> The inner product is <math display=block>\langle f, g \rangle = \int_a^b f(t) \overline{g(t)} \, \mathrm{d}t.</math> This space is not complete; consider for example, for the interval {{closed-closed|−1, 1}} the sequence of continuous "step" functions, <math>\{ f_k \}_k,</math> defined by: <math display=block>f_k(t) = \begin{cases} 0 & t \in [-1, 0] \\ 1 & t \in \left[\tfrac{1}{k}, 1\right] \\ kt & t \in \left(0, \tfrac{1}{k}\right) \end{cases}</math> This sequence is a [[Cauchy sequence]] for the norm induced by the preceding inner product, which does not converge to a {{em|continuous}} function. ===Random variables=== For real [[random variable]]s <math>X</math> and <math>Y,</math> the [[expected value]] of their product <math display="block">\langle X, Y \rangle = \mathbb{E}[XY]</math> is an inner product.<ref>{{cite web|last1=Ouwehand|first1=Peter|title=Spaces of Random Variables|url=http://users.aims.ac.za/~pouw/Lectures/Lecture_Spaces_Random_Variables.pdf|website=AIMS|access-date=2017-09-05|date=November 2010|archive-date=2017-09-05|archive-url=https://web.archive.org/web/20170905225616/http://users.aims.ac.za/~pouw/Lectures/Lecture_Spaces_Random_Variables.pdf|url-status=dead}}</ref><ref>{{cite web|last1=Siegrist|first1=Kyle|title=Vector Spaces of Random Variables|url=http://www.math.uah.edu/stat/expect/Spaces.html|website=Random: Probability, Mathematical Statistics, Stochastic Processes|access-date=2017-09-05|date=1997}}</ref><ref>{{cite thesis|last1=Bigoni|first1=Daniele|title=Uncertainty Quantification with Applications to Engineering Problems|date=2015|type=PhD|publisher=Technical University of Denmark|chapter-url=http://orbit.dtu.dk/files/106969507/phd359_Bigoni_D.pdf|access-date=2017-09-05|chapter=Appendix B: Probability theory and functional spaces}}</ref> In this case, <math>\langle X, X \rangle = 0</math> if and only if <math>\mathbb{P}[X = 0] = 1</math> (that is, <math>X = 0</math> [[almost surely]]), where <math>\mathbb{P}</math> denotes the [[probability]] of the event. This definition of expectation as inner product can be extended to [[random vector]]s as well. ===Complex matrices=== The inner product for complex square matrices of the same size is the [[Frobenius inner product]] <math>\langle A, B \rangle := \operatorname{tr}\left(AB^\dagger\right)</math>. Since trace and transposition are linear and the conjugation is on the second matrix, it is a sesquilinear operator. We further get Hermitian symmetry by, <math display=block>\langle A, B \rangle = \operatorname{tr}\left(AB^\dagger\right) = \overline{\operatorname{tr}\left(BA^\dagger\right)} = \overline{\left\langle B,A \right\rangle}</math> Finally, since for <math>A</math> nonzero, <math>\langle A, A\rangle = \sum_{ij} \left|A_{ij}\right|^2 > 0 </math>, we get that the Frobenius inner product is positive definite too, and so is an inner product. ===Vector spaces with forms=== On an inner product space, or more generally a vector space with a [[nondegenerate form]] (hence an isomorphism <math>V \to V^*</math>), vectors can be sent to covectors (in coordinates, via transpose), so that one can take the inner product and outer product of two vectors—not simply of a vector and a covector.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Inner product space
(section)
Add topic