Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Hausdorff maximal principle
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Proof 2== The [[Bourbaki–Witt theorem]], together with the [[Axiom of choice]], can be used to prove the Hausdorff maximal principle. Indeed, let <math>P</math> be a nonempty poset and <math>X\mathrel{\mathop:}=\{C\subseteq P\,:\, C\ \text{is a chain}\}</math> be the set of all totally ordered subsets of <math>P</math>. Notice that <math>X\neq \emptyset</math>, since <math>P\neq \emptyset</math> and <math>\{x\}\in X</math>, for any <math>x\in P</math>. Also, equipped with the inclusion <math>\subseteq</math>, <math>X</math> is a poset. We claim that every chain <math>\mathcal{C}\subseteq X</math> has a [[supremum]]. In order to check this out, let <math>S</math> be the union <math>\bigcup_{C\in \mathcal{C}}C</math>. Clearly, <math>C\subseteq S</math>, for all <math>C\in \mathcal{C}</math>. Also, if <math>U</math> is any upper bound of <math>\mathcal{C}</math>, then <math>S\subseteq U</math>, since by definition <math>C\subseteq U</math> for all <math>C\in \mathcal{C}</math>. Now, consider the map <math>f\colon X\to X</math> given by <math>f(C)\mathrel{\mathop:}=\begin{cases}C, &\text{if}\ C\ \text{is maximal}\\ C\cup \{g(P\setminus C)\}, &\text{if}\ C\ \text{is not maximal}\end{cases}</math> where <math>g</math> is a [[choice function]] on <math>\{P\setminus C\}</math> whose existence is ensured by the Axiom of choice, and the fact that <math>P\setminus C\neq \emptyset</math> is an immediate consequence of the non-maximality of <math>C</math>. Thus, <math>C\subseteq f(C)</math>, for each <math>C\in X</math>. In view of the Bourbaki-Witt theorem, there exists an element <math>C_0\in \mathcal{C}</math> such that <math>f(C_0)=C_0</math>, and therefore <math>C_0</math> is a maximal chain of <math>P</math>. In the case <math>P=\emptyset</math>, the empty set is trivially a maximal chain of <math>P</math>, as already mentioned above. <math>\square</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Hausdorff maximal principle
(section)
Add topic