Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Harmonic series (mathematics)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Partial sums== {{main|Harmonic number}} {| class="wikitable" style="margin:0 0 0 1em; text-align:right; float:right;" ! rowspan="2" style="padding-top:1em;"|<math>n</math> !! colspan="4"|Partial sum of the harmonic series, <math>H_n</math> |- ! colspan="2"|expressed as a fraction !! decimal !! relative size |- | style="text-align:right;"|1 || style="text-align:center;" colspan="2"|1 || {{0|~}}{{bartable|1||20}} |- | style="text-align:right;"|2 || style="border-right:none;text-align:right;padding-right:0;"|3 || style="border-left:none;text-align:left;padding-left:0;"|/2 || {{bartable|1.5||20}} |- | style="text-align:right;"|3 || style="border-right:none;text-align:right;padding-right:0;"|11 || style="border-left:none;text-align:left;padding-left:0;"|/6 || ~{{bartable|1.83333||20}} |- | style="text-align:right;"|4 || style="border-right:none;text-align:right;padding-right:0;"|25 || style="border-left:none;text-align:left;padding-left:0;"|/12 || ~{{bartable|2.08333||20}} |- | style="text-align:right;"|5 || style="border-right:none;text-align:right;padding-right:0;"|137 || style="border-left:none;text-align:left;padding-left:0;"|/60 || ~{{bartable|2.28333||20}} |- | style="text-align:right;"|6 || style="border-right:none;text-align:right;padding-right:0;"|49 || style="border-left:none;text-align:left;padding-left:0;"|/20 || {{bartable|2.45||20}} |- | style="text-align:right;"|7 || style="border-right:none;text-align:right;padding-right:0;"|363 || style="border-left:none;text-align:left;padding-left:0;"|/140 || ~{{bartable|2.59286||20}} |- | style="text-align:right;"|8 || style="border-right:none;text-align:right;padding-right:0;"|761 || style="border-left:none;text-align:left;padding-left:0;"|/280 || ~{{bartable|2.71786||20}} |- | style="text-align:right;"|9 || style="border-right:none;text-align:right;padding-right:0;"|7129 || style="border-left:none;text-align:left;padding-left:0;"|/2520 || ~{{bartable|2.82897||20}} |- | style="text-align:right;"|10 || style="border-right:none;text-align:right;padding-right:0;"|7381 || style="border-left:none;text-align:left;padding-left:0;"|/2520 || ~{{bartable|2.92897||20}} |- | style="text-align:right;"|11 || style="border-right:none;text-align:right;padding-right:0;"|83711 || style="border-left:none;text-align:left;padding-left:0;"|/27720 || ~{{bartable|3.01988||20}} |- | style="text-align:right;"|12 || style="border-right:none;text-align:right;padding-right:0;"|86021 || style="border-left:none;text-align:left;padding-left:0;"|/27720 || ~{{bartable|3.10321||20}} |- | style="text-align:right;"|13 || style="border-right:none;text-align:right;padding-right:0;"|1145993 || style="border-left:none;text-align:left;padding-left:0;"|/360360 || ~{{bartable|3.18013||20}} |- | style="text-align:right;"|14 || style="border-right:none;text-align:right;padding-right:0;"|1171733 || style="border-left:none;text-align:left;padding-left:0;"|/360360 || ~{{bartable|3.25156||20}} |- | style="text-align:right;"|15 || style="border-right:none;text-align:right;padding-right:0;"|1195757 || style="border-left:none;text-align:left;padding-left:0;"|/360360 || ~{{bartable|3.31823||20}} |- | style="text-align:right;"|16 || style="border-right:none;text-align:right;padding-right:0;"|2436559 || style="border-left:none;text-align:left;padding-left:0;"|/720720 || ~{{bartable|3.38073||20}} |- | style="text-align:right;"|17 || style="border-right:none;text-align:right;padding-right:0;"|42142223 || style="border-left:none;text-align:left;padding-left:0;"|/12252240 || ~{{bartable|3.43955||20}} |- | style="text-align:right;"|18 || style="border-right:none;text-align:right;padding-right:0;"|14274301 || style="border-left:none;text-align:left;padding-left:0;"|/4084080 || ~{{bartable|3.49511||20}} |- | style="text-align:right;"|19 || style="border-right:none;text-align:right;padding-right:0;"|275295799 || style="border-left:none;text-align:left;padding-left:0;"|/77597520 || ~{{bartable|3.54774||20}} |- | style="text-align:right;"|20 || style="border-right:none;text-align:right;padding-right:0;"|55835135 || style="border-left:none;text-align:left;padding-left:0;"|/15519504 || ~{{bartable|3.59774||20}} |} <!-- Python script to generate n from 2 to 30: import fractions numerator = 1; denominator = 1 for i in range(2, 30 + 1): numerator = numerator * i + denominator; denominator *= i; gcd = fractions.gcd(numerator, denominator); numerator /= gcd; denominator /= gcd decimal = ('{}' if (i < 3 or i == 6) else '{:.5f}').format(float(numerator) / denominator); exact = '' if (i < 3 or i == 6) else '~' print('|-\n| style="text-align:right;"|{} || style="border-right:none;text-align:right;padding-right:0;"|{:,} || style="border-left:none;text-align:left;padding-left:0;"|/{:,} || {}{{{{bartable|{}||20}}}}'. format(i, numerator, denominator, exact, decimal).replace(',', '')) --> Adding the first <math>n</math> terms of the harmonic series produces a [[partial sum]], called a [[harmonic number]] and {{nowrap|denoted <math>H_n</math>:{{r|knuth}}}} <math display=block>H_n = \sum_{k = 1}^n \frac{1}{k}.</math> ===Growth rate=== These numbers grow very slowly, with [[logarithmic growth]], as can be seen from the integral test.{{r|bressoud}} More precisely, by the [[Euler–Maclaurin formula]], <math display=block>H_n = \ln n + \gamma + \frac{1}{2n} - \varepsilon_n</math> where <math>\gamma\approx 0.5772</math> is the [[Euler–Mascheroni constant]] and <math>0\le\varepsilon_n\le 1/(8n^2)</math> which approaches 0 as <math>n</math> goes to infinity.{{r|boawre}} ===Divisibility=== No harmonic numbers are integers except for {{nowrap|<math>H_1=1</math>.{{r|havil|osler}}}} One way to prove that <math>H_n</math> is not an integer is to consider the highest [[power of two]] <math>2^k</math> in the range from {{nowrap|1 to <math>n</math>.}} If <math>M</math> is the [[least common multiple]] of the numbers from {{nowrap|1 to <math>n</math>,}} then <math>H_k</math> can be rewritten as a sum of fractions with equal denominators <math display=block>H_n=\sum_{i=1}^n \tfrac{M/i}{M}</math> in which only one of the numerators, {{nowrap|<math>M/2^k</math>,}} is odd and the rest are even, and {{nowrap|(when <math>n>1</math>)}} <math>M</math> is itself even. Therefore, the result is a fraction with an odd numerator and an even denominator, which cannot be an integer.{{r|havil}} More generally, any sequence of consecutive integers has a unique member divisible by a greater power of two than all the other sequence members, from which it follows by the same argument that no two harmonic numbers differ by an integer.{{r|osler}} Another proof that the harmonic numbers are not integers observes that the denominator of <math>H_n</math> must be divisible by all [[prime number]]s greater than <math>n/2</math> and less than or equal to <math>n</math>, and uses [[Bertrand's postulate]] to prove that this set of primes is non-empty. The same argument implies more strongly that, except for <math>H_1=1</math>, <math>H_2=1.5</math>, and <math>H_6=2.45</math>, no harmonic number can have a [[terminating decimal]] representation.{{r|havil}} It has been conjectured that every prime number divides the numerators of only a finite subset of the harmonic numbers, but this remains unproven.{{r|sanna}} ===Interpolation=== [[File:Psi0.png|thumb|upright|The [[digamma function]] on the complex numbers]] The [[digamma function]] is defined as the [[logarithmic derivative]] of the [[gamma function]] <math display=block>\psi(x)=\frac{d}{dx}\ln\big(\Gamma(x)\big)=\frac{\Gamma'(x)}{\Gamma(x)}.</math> Just as the gamma function provides a continuous [[interpolation]] of the [[factorial]]s, the digamma function provides a continuous interpolation of the harmonic numbers, in the sense that {{nowrap|<math>\psi(n)=H_{n-1}-\gamma</math>.{{r|ross}}}} This equation can be used to extend the definition to harmonic numbers with rational indices.<ref>{{cite journal|first1=Anthony|last1=Sofo|first2=H. M. |last2=Srivastava|title=A family of shifted harmonic sums|year=2015|journal=The Ramanujan Journal|volume=37|pages=89–108|doi=10.1007/s11139-014-9600-9|s2cid=254990799 }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Harmonic series (mathematics)
(section)
Add topic