Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Gravitational redshift
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Prediction of the Newtonian limit using the properties of photons ==== The formula for the gravitational red shift in the Newtonian limit can also be derived using the properties of a photon:<ref>A. Malcherek: ''Elektromagnetismus und Gravitation'', Vereinheitlichung und Erweiterung der klassischen Physik. 2. Edition, Springer-Vieweg, Wiesbaden, 2023, ISBN 978-3-658-42701-6. [[doi:10.1007/978-3-658-42702-3]]</ref> In a gravitational field <math>\vec{g}</math> a particle of mass <math>m</math> and velocity <math>\vec{v}</math> changes it's energy <math>E</math> according to: : <math>\frac{\mathrm dE}{\mathrm dt} = m \vec{g}\cdot \vec{v} = \vec{g}\cdot\vec{p}</math>. For a massless photon described by its energy <math>E = h \nu = \hbar \omega</math> and momentum <math>\vec{p} = \hbar\vec{k}</math> this equation becomes after dividing by the Planck constant <math>\hbar</math>: : <math>\frac{\mathrm d \omega}{\mathrm dt} = \vec{g}\cdot \vec{k}</math> Inserting the gravitational field of a spherical body of mass <math>M</math> within the distance <math>\vec{r}</math> : <math>\vec{g} = -G M \frac{\vec{r}}{r^3}</math> and the wave vector of a photon leaving the gravitational field in radial direction : <math>\vec{k} = \frac{\omega}{c} \frac{\vec{r}}{r}</math> the energy equation becomes : <math>\frac{\mathrm d \omega}{\mathrm dt} = -\frac{G M}{c} \frac{\omega}{r^2}.</math> Using <math>\mathrm dr = c \,\mathrm dt</math> an ordinary differential equation which is only dependent on the radial distance <math>r</math> is obtained: : <math>\frac{\mathrm d \omega}{\mathrm dr} = -\frac{G M}{c^2} \frac{\omega}{r^2} </math> For a photon starting at the surface of a spherical body with a Radius <math>R_e</math> with a frequency <math>\omega_0 = 2 \pi \nu_0</math> the analytical solution is: : <math>\frac{\mathrm d \omega}{\mathrm dr} = -\frac{G M}{c^2} \frac{\omega}{r^2} \quad \Rightarrow \quad \omega(r) = \omega_0 \exp \left ( -\frac{G M}{c^2} \left( \frac{1}{R_e} - \frac{1}{r} \right) \right) </math> In a large distance from the body <math>r \rightarrow \infty</math> an observer measures the frequency : : <math>\omega_\text{obs} = \omega_0 \exp \left ( -\frac{G M}{c^2} \left( \frac{1}{R_e} \right) \right) \simeq \omega_0 \left( 1 - \frac{G M}{R_e c^2} + \frac{1}{2} \frac{G^2 M^2}{R_e^2 c^4} - \ldots \right). </math> Therefore, the red shift is: : <math> z = \frac{\omega_0 - \omega_\text{obs}}{\omega_\text{obs}} = \frac{1 - \exp \left( -\frac{G M}{R_e c^2} \right)}{\exp \left( -\frac{G M}{R_e c^2} \right)} = \frac{1 - \exp \left( -\frac{r_S}{2 R_e} \right)}{\exp \left( -\frac{r_S}{2 R_e} \right)} </math> In the linear approximation : <math>z = \frac{ \frac{G M}{R_e c^2} - \frac{1}{2} \frac{G^2 M^2}{R_e^2 c^4} + \dots}{ 1 - \frac{G M}{R_e c^2} + \frac{1}{2} \frac{G^2 M^2}{R_e^2 c^4} - \ldots } \simeq \frac{ \frac{G M}{R_e c^2} }{ 1 - \frac{G M}{R_e c^2} + \frac{1}{2} \frac{G^2 M^2}{R_e^2 c^4} - \dots} \simeq \frac{G M}{c^2 R_e} </math> the Newtonian limit for the gravitational red shift of General Relativity is obtained.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Gravitational redshift
(section)
Add topic