Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Goodstein's theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Sequence length as a function of the starting value == The '''Goodstein function''', <math>\mathcal{G}: \mathbb{N} \to \mathbb{N} </math>, is defined such that <math>\mathcal{G}(n)</math> is the length of the Goodstein sequence that starts with ''n''. (This is a [[total function]] since every Goodstein sequence terminates.) The extremely high growth rate of <math>\mathcal{G}</math> can be calibrated by relating it to various standard ordinal-indexed hierarchies of functions, such as the functions <math>H_\alpha</math> in the [[Hardy hierarchy]], and the functions <math>f_\alpha</math> in the [[fast-growing hierarchy]] of LΓΆb and Wainer: * Kirby and Paris (1982) proved that :<math>\mathcal{G}</math> has approximately the same growth-rate as <math>H_{\epsilon_0}</math> (which is the same as that of <math>f_{\epsilon_0}</math>); more precisely, <math>\mathcal{G}</math> dominates <math>H_\alpha</math> for every <math>\alpha < \epsilon_0</math>, and <math>H_{\epsilon_0}</math> dominates <math>\mathcal{G}\,\!.</math> :(For any two functions <math>f, g: \mathbb{N} \to \mathbb{N} </math>, <math>f</math> is said to dominate <math>g</math> if <math>f(n) > g(n)</math> for all sufficiently large <math>n</math>.) * Cichon (1983) showed that :<math> \mathcal{G}(n) = H_{R_2^\omega(n+1)}(1) - 1, </math> :where <math>R_2^\omega(n)</math> is the result of putting ''n'' in hereditary base-2 notation and then replacing all 2s with Ο (as was done in the proof of Goodstein's theorem). * Caicedo (2007) showed that if <math> n = 2^{m_1} + 2^{m_2} + \cdots + 2^{m_k} </math> with <math> m_1 > m_2 > \cdots > m_k, </math> then :<math> \mathcal{G}(n) = f_{R_2^\omega(m_1)}(f_{R_2^\omega(m_2)}(\cdots(f_{R_2^\omega(m_k)}(3))\cdots)) - 2</math>. Some examples: {| class="wikitable" border="1" |- ! colspan=3 | n ! colspan=3 | <math>\mathcal{G}(n)</math> |- | 1 | <math>2^0</math> | <math>2 - 1</math> | <math>H_\omega(1) - 1</math> | <math>f_0(3) - 2</math> | 2 |- | 2 | <math>2^1</math> | <math>2^1 + 1 - 1</math> | <math>H_{\omega + 1}(1) - 1</math> | <math>f_1(3) - 2</math> | 4 |- | 3 | <math>2^1 + 2^0</math> | <math>2^2 - 1</math> | <math>H_{\omega^\omega}(1) - 1</math> | <math>f_1(f_0(3)) - 2</math> | 6 |- | 4 | <math>2^2</math> | <math>2^2 + 1 - 1</math> | <math>H_{\omega^\omega + 1}(1) - 1</math> | <math>f_\omega(3) - 2</math> | 3Β·2<sup>402653211</sup> β 2 β 6.895080803Γ10<sup>121210694</sup> |- | 5 | <math>2^2 + 2^0</math> | <math>2^2 + 2 - 1</math> | <math>H_{\omega^\omega + \omega}(1) - 1</math> | <math>f_\omega(f_0(3)) - 2</math> | > [[Ackermann function|''A'']](4,4) > 10<sup>10<sup>10<sup>19727</sup></sup></sup> |- | 6 | <math>2^2 + 2^1</math> | <math>2^2 + 2 + 1 - 1</math> | <math>H_{\omega^\omega + \omega + 1}(1) - 1</math> | <math>f_\omega(f_1(3)) - 2</math> | > ''A''(6,6) |- | 7 | <math>2^2 + 2^1 + 2^0</math> | <math>2^{2 + 1} - 1</math> | <math>H_{\omega^{\omega + 1}}(1) - 1</math> | <math>f_\omega(f_1(f_0(3))) - 2</math> | > ''A''(8,8) |- | 8 | <math>2^{2 + 1}</math> | <math>2^{2 + 1} + 1 - 1</math> | <math>H_{\omega^{\omega + 1} + 1}(1) - 1</math> | <math>f_{\omega + 1}(3) - 2</math> | > ''A''<sup>3</sup>(3,3) = ''A''(''A''(61, 61), ''A''(61, 61)) |- | colspan=6 align=center | <math>\vdots</math> |- | 12 | <math>2^{2 + 1} + 2^2</math> | <math>2^{2 + 1} + 2^2 + 1 - 1</math> | <math>H_{\omega^{\omega + 1} + \omega^\omega + 1}(1) - 1</math> | <math>f_{\omega + 1}(f_\omega(3)) - 2</math> | > ''f''<sub>Ο+1</sub>(64) > [[Graham's number]] |- | colspan=6 align=center | <math>\vdots</math> |- | 19 | <math>2^{2^2} + 2^1 + 2^0</math> | <math>2^{2^2} + 2^2 - 1</math> | <math>H_{\omega^{\omega^\omega} + \omega^\omega}(1) - 1</math> | <math>f_{\omega^\omega}(f_1(f_0(3))) - 2</math> | |- |} (For [[Ackermann function]] and [[Graham's number]] bounds see [[fast-growing hierarchy#Functions in fast-growing hierarchies]].)
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Goodstein's theorem
(section)
Add topic