Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Generalized Stokes theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Classical vector analysis example == Let <math>\gamma:[a,b]\to\R^2</math> be a [[piecewise]] smooth [[Jordan curve|Jordan plane curve]]. The [[Jordan curve theorem]] implies that <math>\gamma</math> divides <math>\R^2</math> into two components, a [[compact space|compact]] one and another that is non-compact. Let <math>D</math> denote the compact part that is bounded by <math>\gamma</math> and suppose <math>\psi:D\to\R^3</math> is smooth, with <math>S=\psi(D)</math>. If <math>\Gamma</math> is the [[space curve]] defined by <math>\Gamma(t)=\psi(\gamma(t))</math><ref name="cgamma" group="note"><math>\gamma</math> and <math>\Gamma</math> are both loops, however, <math>\Gamma</math> is not necessarily a [[Jordan curve]]</ref> and <math>\textbf{F}</math> is a smooth vector field on <math>\R^3</math>, then:<ref name="Jame">{{cite book |last=Stewart |first=James |url={{Google books |plainurl=yes |id=btIhvKZCkTsC |page=786 }} |title=Essential Calculus: Early Transcendentals |publisher=Cole |year=2010}}</ref><ref name="bath">This proof is based on the Lecture Notes given by Prof. Robert Scheichl ([[University of Bath]], U.K) [http://www.maths.bath.ac.uk/~masrs/ma20010/], please refer the [http://www.maths.bath.ac.uk/~masrs/ma20010/stokesproofs.pdf]</ref><ref name="proofwik">{{cite web |title=This proof is also same to the proof shown in |url=http://www.proofwiki.org/wiki/Classical_Stokes'_Theorem}}</ref> <math display="block">\oint_\Gamma \mathbf{F}\, \cdot\, d{\mathbf{\Gamma}} = \iint_S \left( \nabla \times \mathbf{F} \right) \cdot\, d\mathbf{S} </math> This classical statement is a special case of the general formulation after making an identification of vector field with a 1-form and its curl with a two form through <math display="block">\begin{pmatrix} F_x \\ F_y \\ F_z \\ \end{pmatrix}\cdot d\Gamma \to F_x \,dx + F_y \,dy + F_z \,dz</math> <math display="block">\begin{align} &\nabla \times \begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix} \cdot d\mathbf{S} = \begin{pmatrix} \partial_y F_z - \partial_z F_y \\ \partial_z F_x - \partial_x F_z \\ \partial_x F_y - \partial_y F_x \\ \end{pmatrix} \cdot d\mathbf{S} \to \\[1.4ex] &d(F_x \,dx + F_y \,dy + F_z \,dz) = \left(\partial_y F_z - \partial_z F_y\right) dy \wedge dz + \left(\partial_z F_x -\partial_x F_z\right) dz \wedge dx + \left(\partial_x F_y - \partial_y F_x\right) dx \wedge dy. \end{align}</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Generalized Stokes theorem
(section)
Add topic