Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Gödel's incompleteness theorems
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Systems which contain arithmetic === The incompleteness theorems apply only to formal systems which are able to prove a sufficient collection of facts about the natural numbers. One sufficient collection is the set of theorems of [[Robinson arithmetic]] {{mvar|Q}}. Some systems, such as Peano arithmetic, can directly express statements about natural numbers. Others, such as ZFC set theory, are able to interpret statements about natural numbers into their language. Either of these options is appropriate for the incompleteness theorems. The theory of [[algebraically closed field]]s of a given [[characteristic (algebra)|characteristic]] is complete, consistent, and has an infinite but recursively enumerable set of axioms. However it is not possible to encode the integers into this theory, and the theory cannot describe arithmetic of integers. A similar example is the theory of [[real closed field]]s, which is essentially equivalent to [[Tarski's axioms]] for [[Euclidean geometry]]. So Euclidean geometry itself (in Tarski's formulation) is an example of a complete, consistent, effectively axiomatized theory. The system of [[Presburger arithmetic]] consists of a set of axioms for the natural numbers with just the addition operation (multiplication is omitted). Presburger arithmetic is complete, consistent, and recursively enumerable and can encode addition but not multiplication of natural numbers, showing that for Gödel's theorems one needs the theory to encode not just addition but also multiplication. {{harvard citations |txt=yes |first=Dan |last=Willard |author1-link=Dan Willard |year=2001}} has studied some weak families of arithmetic systems which allow enough arithmetic as relations to formalise Gödel numbering, but which are not strong enough to have multiplication as a function, and so fail to prove the second incompleteness theorem; that is to say, these systems are consistent and capable of proving their own consistency (see [[self-verifying theories]]).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Gödel's incompleteness theorems
(section)
Add topic