Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Foucault pendulum
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Equation formulation for the Foucault pendulum == To model the Foucault pendulum, we consider a pendulum of length ''L'' and mass ''m'', oscillating with small amplitudes. In a reference frame rotating with Earth at angular velocity Ω, the Coriolis force must be included. The equations of motion in the horizontal plane (''x'', ''y'') are: :<math> \begin{aligned} \ddot{x} + \omega_0^2 x &= 2\Omega \sin(\varphi) \dot{y}, \\ \ddot{y} + \omega_0^2 y &= -2\Omega \sin(\varphi) \dot{x}, \end{aligned} </math> where: * <math>\omega_0 = \sqrt{\frac{g}{L}}</math> is the natural angular frequency of the pendulum, * <math>\varphi</math> is the latitude, * <math>g</math> is the acceleration due to gravity. These coupled differential equations describe the pendulum's motion, incorporating the Coriolis effect due to Earth's rotation.<ref>{{cite web |title=Foucault Pendulum Details |url=https://www.phys.unsw.edu.au/~jw/pendulumdetails.html |publisher=UNSW Physics |access-date=2025-01-11}}</ref> === Precession rate calculation === The precession rate of the pendulum’s oscillation plane depends on latitude. The angular precession rate <math>\Omega_p</math> is given by: :<math>\Omega_p = \Omega \sin(\varphi),</math> where <math>\Omega</math> is Earth's angular rotation rate (approximately <math>7.2921 \times 10^{-5}</math> radians per second).<ref>{{cite web |title=Mathematical Derivations of the Foucault Pendulum |url=https://www.idc-online.com/technical_references/pdfs/mechanical_engineering/Mathematical_derivations_of_the_Foucault_pendulum.pdf |publisher=IDC Online |access-date=2025-01-11}}</ref> === Examples of precession periods === The time <math>T_p</math> for a full rotation of the pendulum’s plane is: :<math>T_p = \frac{2\pi}{\Omega_p} = \frac{2\pi}{\Omega \sin(\varphi)}.</math> Calculations for specific locations: * '''Paris, France''' (latitude <math>\varphi \approx 48.8566^\circ</math>): :<math> \begin{aligned} \Omega_p &= \Omega \sin(48.8566^\circ) \approx 7.2921 \times 10^{-5} \times 0.7547 \\ &\approx 5.506 \times 10^{-5} \, \text{radians/second}, \\ T_p &= \frac{2\pi}{5.506 \times 10^{-5}} \approx 114,105 \, \text{seconds} \\ &\approx 31.7 \, \text{hours}. \end{aligned} </math><ref>{{cite web |title=Foucault Pendulum Derivation |url=https://warwick.ac.uk/fac/sci/physics/intranet/pendulum/derivation/ |publisher=Warwick University |access-date=2025-01-11}}</ref> * '''New York City, USA''' (latitude <math>\varphi \approx 40.7128^\circ</math>): :<math> \begin{aligned} \Omega_p &= \Omega \sin(40.7128^\circ) \approx 7.2921 \times 10^{-5} \times 0.6523 \\ &\approx 4.757 \times 10^{-5} \, \text{radians/second}, \\ T_p &= \frac{2\pi}{4.757 \times 10^{-5}} \approx 132,000 \, \text{seconds} \\ &\approx 36.7 \, \text{hours}. \end{aligned} </math><ref>{{cite web |title=Foucault Pendulum Details |url=https://www.phys.unsw.edu.au/~jw/pendulumdetails.html |publisher=UNSW Physics |access-date=2025-01-11}}</ref> These calculations show that the pendulum's precession period varies with latitude, completing a full rotation more quickly at higher latitudes.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Foucault pendulum
(section)
Add topic