Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Finite field
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Field with four elements === The smallest non-prime field is the field with four elements, which is commonly denoted <math>\mathrm{GF}(4)</math> or <math>\mathbb{F}_4.</math> It consists of the four elements <math>0, 1, \alpha, 1 + \alpha</math> such that <math>\alpha^2=1+\alpha</math>, <math>1 \cdot \alpha = \alpha \cdot 1 = \alpha</math>, <math>x+x=0</math>, and <math>x \cdot 0 = 0 \cdot x = 0</math>, for every <math>x \in \mathrm{GF}(4)</math>, the other operation results being easily deduced from the [[distributive law]]. See below for the complete operation tables. This may be deduced as follows from the results of the preceding section. Over <math>\mathrm{GF}(2)</math>, there is only one [[irreducible polynomial]] of degree <math>2</math>: <math display="block">X^2+X+1</math> Therefore, for <math>\mathrm{GF}(4)</math> the construction of the preceding section must involve this polynomial, and <math display="block">\mathrm{GF}(4) = \mathrm{GF}(2)[X]/(X^2+X+1).</math> Let <math>\alpha</math> denote a root of this polynomial in <math>\mathrm{GF}(4)</math>. This implies that <math display="block">\alpha^2 = 1 + \alpha,</math> and that <math>\alpha</math> and <math>1+\alpha</math> are the elements of <math>\mathrm{GF}(4)</math> that are not in <math>\mathrm{GF}(2)</math>. The tables of the operations in <math>\mathrm{GF}(4)</math> result from this, and are as follows: {| style="border-spacing:1.7em 0" | {| class="wikitable" |+ Addition <math>x + y</math> |- ! style="width:24%;" {{diagonal split header|{{math|''x''}}|{{math|''y''}}}} !! style="width:20%;"| {{math|0}} !! style="width:20%;"| {{math|1}} !! style="width:20%;"| {{math|''α''}} !! style="width:20%;"| {{math|1 + ''α''}} |- !style="text-align:left"| {{math|0}} | {{math|0}} | {{math|1}} | {{math|''α''}} | {{math|1 + ''α''}} |- !style="text-align:left"| {{math|1}} | {{math|1}} | {{math|0}} | {{math|1 + ''α''}} | {{math|''α''}} |- !style="text-align:left"| {{math|''α''}} || {{math|''α''}} | {{math|1 + ''α''}} | {{math|0}} | {{math|1}} |- !style="text-align:left"| {{math|1 + ''α''}} | {{math|1 + ''α''}} | {{math|''α''}} | {{math|1}} | {{math|0}} |} | {| class="wikitable" |+ Multiplication <math>x \cdot y</math> |- ! style="width:28%;" {{diagonal split header|{{math|''x''}}|{{math|''y''}}}} !! style="width:12%;"| {{math|0}} !! style="width:20%;"| {{math|1}} !! style="width:20%;"| {{math|''α''}} !! style="width:20%;"| {{math|1 + ''α''}} |- !style="text-align:left"| {{math|0}} | {{math|0}} | {{math|0}} || {{math|0}} || {{math|0}} |- !style="text-align:left"| {{math|1}} | {{math|0}} | {{math|1}} || {{math|''α''}} || {{math|1 + ''α''}} |- !style="text-align:left"| {{math|''α''}} || {{math|0}} || {{math|''α''}} || {{math|1 + ''α''}} || {{math|1}} |- !style="text-align:left"| {{math|1 + ''α''}} || {{math|0}} || {{math|1 + ''α''}} || {{math|1}} || {{math|''α''}} |} | {| class="wikitable" |+ Division <math>x \div y</math> |- ! style="width:24%;" {{diagonal split header|{{math|''x''}}|{{math|''y''}}}} !! style="width:20%;"| {{math|1}} !! style="width:20%;"| {{math|''α''}} !! style="width:20%;"| {{math|1 + ''α''}} |- !style="text-align:left"| {{math|0}} | {{math|0}} || {{math|0}} || {{math|0}} |- !style="text-align:left"| {{math|1}} | {{math|1}} || {{math|1 + ''α''}} || {{math|''α''}} |- !style="text-align:left"| {{math|''α''}} || {{math|''α''}} || {{math|1}} || {{math|1 + ''α''}} |- !style="text-align:left"| {{math|1 + ''α''}} || {{math|1 + ''α''}} || {{math|''α''}} || {{math|1}} |} |} A table for subtraction is not given, because subtraction is identical to addition, as is the case for every field of characteristic 2. In the third table, for the division of <math>x</math> by <math>y</math>, the values of <math>x</math> must be read in the left column, and the values of <math>y</math> in the top row. (Because <math>0 \cdot z = 0</math> for every <math>z</math> in every [[Ring (mathematics)|ring]] the [[division by 0]] has to remain undefined.) From the tables, it can be seen that the additive structure of <math>\mathrm{GF}(4)</math> is isomorphic to the [[Klein four-group]], while the non-zero multiplicative structure is isomorphic to the group <math>Z_3</math>. The map <math display="block"> \varphi:x \mapsto x^2</math> is the non-trivial field automorphism, called the [[#Frobenius automorphism and Galois theory|Frobenius automorphism]], which sends <math>\alpha</math> into the second root <math>1+\alpha</math> of the above-mentioned irreducible polynomial <math>X^2+X+1</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Finite field
(section)
Add topic