Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Equation of state
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Quantum ideal gas law === Since for atomic and molecular gases, the classical ideal gas law is well suited in most cases, let us describe the equation of state for elementary particles with mass <math>m</math> and spin <math>s</math> that takes into account quantum effects. In the following, the upper sign will always correspond to [[Fermi–Dirac statistics]] and the lower sign to [[Bose–Einstein statistics]]. The equation of state of such gases with <math>N</math> particles occupying a volume <math>V</math> with temperature <math>T</math> and pressure <math>p</math> is given by<ref>Landau, L. D., Lifshitz, E. M. (1980). Statistical physics: Part I (Vol. 5). page 162-166.</ref> <math display="block">p= \frac{(2s+1)\sqrt{2m^3k_\text{B}^5T^5}}{3\pi^2\hbar^3}\int_0^\infty\frac{z^{3/2}\,\mathrm{d}z}{e^{z-\mu/(k_\text{B} T)}\pm 1}</math> where <math>k_\text{B}</math> is the [[Boltzmann constant]] and <math>\mu(T,N/V)</math> the [[chemical potential]] is given by the following implicit function <math display="block">\frac{N}{V}=\frac{(2s+1)(m k_\text{B}T)^{3/2}}{\sqrt 2\pi^2\hbar^3}\int_0^\infty\frac{z^{1/2}\,\mathrm{d}z}{e^{z-\mu / (k_\text{B} T)}\pm 1}.</math> In the limiting case where <math>e^{\mu / (k_\text{B} T)}\ll 1</math>, this equation of state will reduce to that of the classical ideal gas. It can be shown that the above equation of state in the limit <math>e^{\mu/(k_\text{B} T)}\ll 1</math> reduces to <math display="block">pV = N k_\text{B} T\left[1\pm\frac{\pi^{3/2}}{2(2s+1)} \frac{N\hbar^3}{V(m k_\text{B} T)^{3/2}}+\cdots\right]</math> With a fixed number density <math>N/V</math>, decreasing the temperature causes in [[Fermi gas]], an increase in the value for pressure from its classical value implying an effective repulsion between particles (this is an apparent repulsion due to quantum exchange effects not because of actual interactions between particles since in ideal gas, interactional forces are neglected) and in [[Bose gas]], a decrease in pressure from its classical value implying an effective attraction. The quantum nature of this equation is in it dependence on s and '''ħ'''.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Equation of state
(section)
Add topic