Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Elliptic integral
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Complete elliptic integral of the first kind== <!-- This section is redirected from [[Complete elliptic integral of the first kind]] --> [[Image:Mplwp complete ellipticKk.svg|thumb|300px|Plot of the complete elliptic integral of the first kind {{math|''K''(''k'')}}]] Elliptic Integrals are said to be 'complete' when the amplitude {{math|1=''φ'' = {{sfrac|π|2}}}} and therefore {{math|1=''x'' = 1}}. The '''complete elliptic integral of the first kind''' {{math|''K''}} may thus be defined as <math display="block">K(k) = \int_0^\tfrac{\pi}{2} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}} = \int_0^1 \frac{dt}{\sqrt{\left(1-t^2\right)\left(1-k^2 t^2\right)}},</math> or more compactly in terms of the incomplete integral of the first kind as <math display="block">K(k) = F\left(\tfrac{\pi}{2},k\right) = F\left(\tfrac{\pi}{2} \,|\, k^2\right) = F(1;k).</math> It can be expressed as a [[power series]] <math display="block">K(k) = \frac{\pi}{2}\sum_{n=0}^\infty \left(\frac{(2n)!}{2^{2 n} (n!)^2}\right)^2 k^{2n} = \frac{\pi}{2} \sum_{n=0}^\infty \bigl(P_{2 n}(0)\bigr)^2 k^{2n},</math> where {{math|''P''<sub>''n''</sub>}} is the [[Legendre polynomials]], which is equivalent to <math display="block">K(k) = \frac{\pi}{2}\left(1+\left(\frac{1}{2}\right)^2 k^2+\left(\frac{1\cdot 3}{2\cdot 4}\right)^2 k^4+\cdots+\left(\frac{\left(2n-1\right)!!}{\left(2n\right)!!}\right)^2 k^{2n}+\cdots\right),</math> where {{math|''n''!!}} denotes the [[double factorial]]. In terms of the Gauss [[hypergeometric function]], the complete elliptic integral of the first kind can be expressed as <math display="block">K(k) = \tfrac{\pi}{2} \,{}_2F_1 \left(\tfrac{1}{2}, \tfrac{1}{2}; 1; k^2\right).</math> The complete elliptic integral of the first kind is sometimes called the [[quarter period]]. It can be computed very efficiently in terms of the [[arithmetic–geometric mean]]:{{sfn|Carlson|2010|loc=19.8}} <math display="block">K(k) = \frac{\pi}{2\operatorname{agm}\left(1,\sqrt{1-k^2}\right)}.</math> Therefore, the modulus can be transformed as: <math display="block">\begin{align} K(k) &= \frac{\pi}{2\operatorname{agm}\left(1,\sqrt{1-k^2}\right)} \\[4pt] & = \frac{\pi}{2\operatorname{agm}\left(\frac12+\frac\sqrt{1-k^2}{2},\sqrt[4]{1-k^2}\right)} \\[4pt] &= \frac{\pi}{\left(1+\sqrt{1-k^2}\right)\operatorname{agm}\left(1,\frac{2\sqrt[4]{1-k^2}}{\left(1+\sqrt{1-k^2}\right)}\right)} \\[4pt] & = \frac{2}{1+\sqrt{1-k^2}}K\left(\frac{1-\sqrt{1-k^2}}{1+\sqrt{1-k^2}}\right) \end{align}</math> This expression is valid for all <math>n \isin \mathbb{N}</math> and {{math|0 ≤ ''k'' ≤ 1}}: <math display="block">K(k) = n\left[\sum_{a = 1}^{n} \operatorname{dn}\left(\frac{2a}{n}K(k);k\right)\right]^{-1}K\left[k^n\prod_{a=1}^{n}\operatorname{sn}\left(\frac{2a-1}{n}K(k);k\right)^2\right] </math> ===Relation to the gamma function=== If {{math|1=''k''<sup>2</sup> = ''λ''(''i''{{sqrt|''r''}})}} and <math>r \isin \mathbb{Q}^+</math> (where {{mvar|λ}} is the [[modular lambda function]]), then {{math|''K''(''k'')}} is expressible in closed form in terms of the [[gamma function]].<ref>{{Cite book |last1=Borwein |first1=Jonathan M. |last2=Borwein| first2=Peter B. |title=Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity |publisher=Wiley-Interscience |year=1987 |edition=First |isbn=0-471-83138-7}} p. 296</ref> For example, {{math|1=''r'' = 2}}, {{math|1=''r'' = 3}} and {{math|1=''r'' = 7}} give, respectively,<ref>{{Cite book |last1=Borwein |first1=Jonathan M. |last2=Borwein| first2=Peter B. |title=Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity |publisher=Wiley-Interscience |year=1987 |edition=First |isbn=0-471-83138-7}} p. 298</ref> <math display="block">K\left(\sqrt{2}-1\right)=\frac{\Gamma \left(\frac18\right)\Gamma \left(\frac38\right)\sqrt{\sqrt{2}+1}}{8\sqrt[4]{2}\sqrt{\pi}},</math> and <math display="block">K\left(\frac{\sqrt{3}-1}{2\sqrt{2}}\right)=\frac{1}{8\pi}\sqrt[4]{3}\,\sqrt[3]{4}\,\Gamma\biggl(\frac{1}{3}\biggr)^3</math> and <math display="block">K\left(\frac{3-\sqrt{7}}{4\sqrt{2}}\right)=\frac{\Gamma \left(\frac17\right)\Gamma \left(\frac27\right)\Gamma \left(\frac47\right)}{4\sqrt[4]{7}\pi}.</math> More generally, the condition that <math display="block">\frac{iK'}{K}=\frac{iK\left(\sqrt{1-k^2}\right)}{K(k)}</math> be in an [[Quadratic field|imaginary quadratic field]]<ref group="note">{{mvar|K}} can be [[Analytic continuation|analytically extended]] to the [[complex plane]].</ref> is sufficient.<ref>{{Cite journal|title=On Epstein's Zeta Function (I).|last1=Chowla|first1=S.|last2=Selberg|first2=A.|journal=Proceedings of the National Academy of Sciences|year=1949|volume=35|issue=7|page=373|doi=10.1073/PNAS.35.7.371|pmid=16588908|pmc=1063041|bibcode=1949PNAS...35..371C|s2cid=45071481}}</ref><ref>{{Cite journal|url=https://eudml.org/doc/150803|title=On Epstein's Zeta-Function|last1=Chowla|first1=S.|last2=Selberg|first2=A.|journal=Journal für die Reine und Angewandte Mathematik|year=1967|volume=227|pages=86–110}}</ref> For instance, if {{math|1=''k'' = ''e''<sup>5''πi''/6</sup>}}, then {{math|1={{sfrac|''iK''{{prime}}|''K''}} = ''e''<sup>2''πi''/3</sup>}} and<ref>{{Cite web|url=https://fungrim.org/topic/Legendre_elliptic_integrals/|title = Legendre elliptic integrals (Entry 175b7a)}}</ref> <math display="block">K\left(e^{5\pi i/6}\right)=\frac{e^{-\pi i/12}\Gamma ^3\left(\frac13\right)\sqrt[4]{3}}{4\sqrt[3]{2}\pi}.</math> ===Asymptotic expressions=== <math display="block">K\left(k\right)\approx\frac{\pi}{2}+\frac{\pi}{8}\frac{k^2}{1-k^2}-\frac{\pi}{16}\frac{k^4}{1-k^2}</math> This approximation has a relative precision better than {{val|3|e=−4}} for {{math|''k'' < {{sfrac|1|2}}}}. Keeping only the first two terms is correct to 0.01 precision for {{math|''k'' < {{sfrac|1|2}}}}.{{citation needed|date=January 2017}} ===Differential equation=== The differential equation for the elliptic integral of the first kind is <math display="block">\frac{d}{dk}\left(k\left(1-k^2\right)\frac{dK(k)}{dk}\right) = k \, K(k)</math> A second solution to this equation is <math>K\left(\sqrt{1-k^2}\right)</math>. This solution satisfies the relation <math display="block">\frac{d}{dk}K(k) = \frac{E(k)}{k\left(1-k^2\right)}-\frac{K(k)}{k}.</math> ===Continued fraction=== A [[continued fraction]] expansion is:<ref>N.Bagis,L.Glasser.(2015)"Evaluations of a Continued fraction of Ramanujan". Rend.Sem.Mat.Univ.Padova, Vol.133 pp 1-10</ref> <math display="block">\frac{K(k)}{2\pi} = -\frac{1}{4} + \sum^{\infty}_{n=0} \frac{q^n}{1+q^{2n}} = -\frac{1}{4} + \cfrac{1}{1-q+ \cfrac{\left(1-q\right)^2}{1-q^3+ \cfrac{q\left(1-q^2\right)^2}{1-q^5+ \cfrac{q^2\left(1-q^3\right)^2}{1-q^7+\cfrac{q^3\left(1-q^4\right)^2}{1-q^9+\cdots}}}}},</math> where the [[Nome (mathematics)|nome]] is <math> q = q(k) = \exp[-\pi K'(k)/K(k)] </math> in its definition. ===Inverting the period ratio=== Here, we use the complete elliptic integral of the first kind with the ''parameter'' <math>m</math> instead, because the squaring function introduces problems when inverting in the complex plane. So let :<math>K[m]=\int_0^{\pi/2}\dfrac{d\theta}{\sqrt{1-m\sin^2\theta}}</math> and let :<math>\theta_2(\tau)=2e^{\pi i\tau/4}\sum_{n=0}^\infty q^{n(n+1)},\quad q=e^{\pi i\tau},\, \operatorname{Im}\tau >0,</math> :<math>\theta_3(\tau)=1+2\sum_{n=1}^\infty q^{n^2},\quad q=e^{\pi i\tau},\,\operatorname{Im}\tau >0</math> be the [[theta function]]s. The equation :<math>\tau=i\frac{K[1-m]}{K[m]}</math> can then be solved (provided that a solution <math>m</math> exists) by :<math>m=\frac{\theta_2(\tau)^4}{\theta_3(\tau)^4}</math> which is in fact the [[modular lambda function]]. For the purposes of computation, the error analysis is given by<ref>{{cite web |url=https://fungrim.org/topic/Approximations_of_Jacobi_theta_functions/ |title=Approximations of Jacobi theta functions |last= |first= |date= |website=The Mathematical Functions Grimoire |publisher=Fredrik Johansson |access-date=August 29, 2024}}</ref> :<math>\left|{e}^{-\pi i \tau / 4} \theta_{2}\!\left(\tau\right) - 2\sum_{n=0}^{N - 1} {q}^{n \left(n + 1\right)}\right| \le \begin{cases} \frac{2 {\left|q\right|}^{N \left(N + 1\right)}}{1 - \left|q\right|^{2N+1}}, & \left|q\right|^{2N+1} < 1\\\infty, & \text{otherwise}\\ \end{cases}\;</math> :<math>\left|\theta_{3}\!\left(\tau\right) - \left(1+2\sum_{n=1}^{N - 1} {q}^{n^2}\right)\right| \le \begin{cases} \frac{2 {\left|q\right|}^{N^2}}{1 - \left|q\right|^{2N+1}}, & \left|q\right|^{2N+1} < 1\\\infty, & \text{otherwise}\\ \end{cases}\;</math> where <math>N\in\mathbb{Z}_{\ge 1}</math> and <math>\operatorname{Im}\tau >0</math>. Also :<math>K[m]=\frac{\pi}{2}\theta_3(\tau )^2,\quad \tau=i\frac{K[1-m]}{K[m]}</math> where <math>m\in\mathbb{C}\setminus\{0,1\}</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Elliptic integral
(section)
Add topic