Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Density matrix
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Measurement == Let <math>A</math> be an [[observable]] of the system, and suppose the ensemble is in a mixed state such that each of the pure states <math>\textstyle |\psi_j\rangle</math> occurs with probability <math>p_j</math>. Then the corresponding density operator equals : <math>\rho = \sum_j p_j |\psi_j \rangle \langle \psi_j|.</math> The [[Expectation value (quantum mechanics)|expectation value]] of the [[Measurement in quantum mechanics|measurement]] can be calculated by extending from the case of pure states: : <math> \langle A \rangle = \sum_j p_j \langle \psi_j|A|\psi_j \rangle = \sum_j p_j \operatorname{tr}\left(|\psi_j \rangle \langle \psi_j|A \right) = \operatorname{tr}\left(\sum_j p_j |\psi_j \rangle \langle \psi_j|A\right) = \operatorname{tr}(\rho A),</math> where <math>\operatorname{tr}</math> denotes [[trace (linear algebra)|trace]]. Thus, the familiar expression <math>\langle A\rangle=\langle\psi|A|\psi\rangle</math> for pure states is replaced by : <math> \langle A \rangle = \operatorname{tr}( \rho A)</math> for mixed states.<ref name=":0" />{{Rp|73}} Moreover, if <math>A</math> has spectral resolution : <math>A = \sum _i a_i P_i,</math> where <math>P_i</math> is the [[projection operator]] into the [[eigenspace]] corresponding to eigenvalue <math>a_i</math>, the post-measurement density operator is given by<ref>{{cite journal|last=Lüders|first=Gerhart|author-link=Gerhart Lüders|year=1950|title=Über die Zustandsänderung durch den Messprozeß|journal=[[Annalen der Physik]]|volume=443|issue=5–8 |page=322|doi=10.1002/andp.19504430510|bibcode=1950AnP...443..322L }} Translated by K. A. Kirkpatrick as {{Cite journal|last=Lüders|first=Gerhart|author-link=Gerhart Lüders|date=2006-04-03|title=Concerning the state-change due to the measurement process|journal=[[Annalen der Physik]]|volume=15|issue=9|pages=663–670|arxiv=quant-ph/0403007|bibcode=2006AnP...518..663L|doi=10.1002/andp.200610207|s2cid=119103479}}</ref><ref>{{Citation|last1=Busch|first1=Paul|title=Lüders Rule|date=2009|work=Compendium of Quantum Physics|pages=356–358|editor-last=Greenberger|editor-first=Daniel|publisher=Springer Berlin Heidelberg|language=en|doi=10.1007/978-3-540-70626-7_110|isbn=978-3-540-70622-9|last2=Lahti|first2=Pekka|author-link=Paul Busch (physicist)|editor2-last=Hentschel|editor2-first=Klaus|editor3-last=Weinert|editor3-first=Friedel}}</ref> : <math>\rho_i' = \frac{P_i \rho P_i}{\operatorname{tr}\left[\rho P_i\right]}</math> when outcome ''i'' is obtained. In the case where the measurement result is not known the ensemble is instead described by : <math>\; \rho ' = \sum_i P_i \rho P_i.</math> If one assumes that the probabilities of measurement outcomes are linear functions of the projectors <math>P_i</math>, then they must be given by the trace of the projector with a density operator. [[Gleason's theorem]] shows that in Hilbert spaces of dimension 3 or larger the assumption of linearity can be replaced with an assumption of [[quantum contextuality|non-contextuality]].<ref>{{cite journal|first=Andrew M.|author-link=Andrew M. Gleason|year = 1957|title = Measures on the closed subspaces of a Hilbert space|url = http://www.iumj.indiana.edu/IUMJ/FULLTEXT/1957/6/56050|journal = [[Indiana University Mathematics Journal]]|volume = 6|issue=4|pages = 885–893|doi=10.1512/iumj.1957.6.56050|mr=0096113|last = Gleason|doi-access = free}}</ref> This restriction on the dimension can be removed by assuming non-contextuality for [[POVM]]s as well,<ref>{{Cite journal|last=Busch|first=Paul|author-link=Paul Busch (physicist) |date=2003|title=Quantum States and Generalized Observables: A Simple Proof of Gleason's Theorem|journal=[[Physical Review Letters]]|volume=91|issue=12|pages=120403|arxiv=quant-ph/9909073|doi=10.1103/PhysRevLett.91.120403|pmid=14525351|bibcode=2003PhRvL..91l0403B|s2cid=2168715}}</ref><ref>{{Cite journal|last1=Caves|first1=Carlton M.|author-link=Carlton M. Caves|last2=Fuchs|first2=Christopher A.|last3=Manne|first3=Kiran K.|last4=Renes|first4=Joseph M.|date=2004|title=Gleason-Type Derivations of the Quantum Probability Rule for Generalized Measurements|journal=[[Foundations of Physics]]|volume=34|issue=2|pages=193–209|arxiv=quant-ph/0306179|doi=10.1023/B:FOOP.0000019581.00318.a5|bibcode=2004FoPh...34..193C|s2cid=18132256}}</ref> but this has been criticized as physically unmotivated.<ref>{{cite journal |author1=Andrzej Grudka |author2=Paweł Kurzyński |title=Is There Contextuality for a Single Qubit? |journal=Physical Review Letters |date=2008 |volume=100 |issue=16 |page=160401 |doi=10.1103/PhysRevLett.100.160401|pmid=18518167 |arxiv=0705.0181|bibcode=2008PhRvL.100p0401G |s2cid=13251108 }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Density matrix
(section)
Add topic