Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Curry's paradox
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Naive set theory === Even if the underlying mathematical logic does not admit any self-referential sentences, certain forms of naive set theory are still vulnerable to Curry's paradox. In set theories that allow [[Axiom schema of specification#Unrestricted comprehension|unrestricted comprehension]], we can prove any logical statement ''Y'' by examining the set <math display="block">X \ \stackrel{\mathrm{def}}{=}\ \left\{ x \mid (x \in x) \to Y \right\}.</math>One then shows easily that the statement <math>X\in X</math> is equivalent to <math>(X\in X) \to Y</math>. From this, <math>Y</math> may be deduced, similarly to the proofs shown above. ("<math>X\in X</math>" stands for "this sentence".) Therefore, in a consistent set theory, the set <math>\left\{ x \mid (x \in x) \to Y \right\}</math> does not exist for false ''Y''. This can be seen as a variant on [[Russell's paradox]], but is not identical. Some proposals for set theory have attempted to deal with Russell's paradox not by restricting the rule of comprehension, but by restricting the rules of logic so that it tolerates the contradictory nature of the set of all sets that are not members of themselves. The existence of proofs like the one above shows that such a task is not so simple, because at least one of the deduction rules used in the proof above must be omitted or restricted.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Curry's paradox
(section)
Add topic