Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Characteristic impedance
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Intuition ==== {{see also|Iterative impedance|Constant k filters}} {{Multiple image| |align=right |direction=vertical <!--image 1--> | image1 = Ladder iterative impedance.svg | alt1 = Iterative impedance of an infinite ladder of L-circuit sections | caption1 = Iterative impedance of an infinite ladder of L-circuit sections | width=300px <!--image 2--> | image2 = L-section iterative impedance.svg | alt2 = Iterative impedance of the equivalent finite L-circuit | caption2 = Iterative impedance of the equivalent finite L-circuit }} Consider an infinite [[ladder network]] consisting of a series impedance <math>\ Z\ </math> and a shunt admittance <math>\ Y ~.</math> Let its input impedance be <math>\ Z_\mathrm{IT} ~.</math> If a new pair of impedance <math>\ Z\ </math> and admittance <math>\ Y\ </math> is added in front of the network, its input impedance <math>\ Z_\mathrm{IT}\ </math> remains unchanged since the network is infinite. Thus, it can be reduced to a finite network with one series impedance <math>\ Z\ </math> and two parallel impedances <math>\ 1 / Y\ </math> and <math>\ Z_\text{IT} ~.</math> Its input impedance is given by the expression<ref>{{cite book |title=The Feynman Lectures on Physics|title-link=The Feynman Lectures on Physics |volume=2 |first1=Richard |last1=Feynman |author1-link=Richard Feynman |first2=Robert B. |last2=Leighton |author2-link=Robert B. Leighton |first3=Matthew |last3=Sands |author3-link=Matthew Sands |section=Section 22-6. A ladder network |section-url=https://www.feynmanlectures.caltech.edu/II_22.html#Ch22-S6}} </ref><ref name=lee2004/> :<math>\ Z_\mathrm{IT} = Z + \left( \frac{\ 1\ }{ Y } \parallel Z_\mathrm{IT} \right)\ </math> which is also known as its [[iterative impedance]]. Its solution is: :<math>\ Z_\mathrm{ IT } = {Z \over 2} \pm \sqrt { {Z^2 \over 4} + {Z \over Y} }\ </math> For a transmission line, it can be seen as a [[Mathematical limit|limiting case]] of an infinite ladder network with [[infinitesimal]] impedance and admittance at a constant ratio.<ref name="feynman">{{cite book|title=The Feynman Lectures on Physics|title-link=The Feynman Lectures on Physics|volume=2|first1=Richard|last1=Feynman|author1-link=Richard Feynman|first2=Robert B.|last2=Leighton|author2-link=Robert B. Leighton|first3=Matthew|last3=Sands|author3-link=Matthew Sands|section=Section 22-7. Filter |section-url=https://www.feynmanlectures.caltech.edu/II_22.html#Ch22-S7 |quote=If we imagine the line as broken up into small lengths Δℓ, each length will look like one section of the L-C ladder with a series inductance ΔL and a shunt capacitance ΔC. We can then use our results for the ladder filter. If we take the limit as Δℓ goes to zero, we have a good description of the transmission line. Notice that as Δℓ is made smaller and smaller, both ΔL and ΔC decrease, but in the same proportion, so that the ratio ΔL/ΔC remains constant. So if we take the limit of Eq. (22.28) as ΔL and ΔC go to zero, we find that the characteristic impedance z0 is a pure resistance whose magnitude is √(ΔL/ΔC). We can also write the ratio ΔL/ΔC as L0/C0, where L0 and C0 are the inductance and capacitance of a unit length of the line; then we have <math>\sqrt{\frac{L_0}{C_0}}</math>}}.</ref><ref name=lee2004>{{cite book |first=Thomas H. |last=Lee |author-link=Thomas H. Lee (electronic engineer) |year=2004 |title=Planar Microwave Engineering: A practical guide to theory, measurement, and circuits |publisher=Cambridge University Press |section=2.5 Driving-point impedance of iterated structure |page=44 }}</ref> Taking the positive root, this equation simplifies to: :<math>\ Z_\mathrm{IT} = \sqrt{ \frac{\ Z\ }{ Y }\ }\ </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Characteristic impedance
(section)
Add topic