Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Calorimetry
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Classical heat calculation with respect to pressure==== From the above rule of calculation of heat with respect to volume, there follows one with respect to pressure.<ref name="Bryan 1907 21β22"/><ref name="Adkins 3.6"/><ref>{{harvnb|Crawford|1963|loc=Β§ 5.10, pp. 121β122}}</ref><ref name="TB 1977 23">{{harvnb|Truesdell|Bharatha|1977|p=23}}</ref> In a process of small increments, <math>\delta p\ </math> of its pressure, and <math>\delta T\ </math> of its temperature, the increment of heat, <math>\delta Q\ </math>, gained by the body of calorimetric material, is given by :<math>\delta Q\ =C^{(p)}_T(p,T)\, \delta p\,+\,C^{(T)}_p(p,T)\,\delta T</math> where :<math>C^{(p)}_T(p,T)\ </math> denotes the latent heat with respect to pressure, of the calorimetric material at constant temperature, while the volume and pressure of the body are allowed to vary freely, at pressure <math>p\ </math> and temperature <math>T\ </math>; :<math>C^{(T)}_p(p,T)\ </math> denotes the heat capacity, of the calorimetric material at constant pressure, while the temperature and volume of the body are allowed to vary freely, at pressure <math>p\ </math> and temperature <math>T\ </math>. It is customary to write <math>C^{(T)}_p(p,T)\ </math> simply as <math>C_p(p,T)\ </math>, or even more briefly as <math>C_p\ </math>. The new quantities here are related to the previous ones:<ref name="Bryan 1907 21β22"/><ref name="Adkins 3.6"/><ref name="TB 1977 23"/><ref>{{harvnb|Crawford|1963|loc=Β§ 5.11, pp. 123β124}}</ref> :<math>C^{(p)}_T(p,T)=\frac{C^{(V)}_T(V,T)}{\left.\cfrac{\partial p}{\partial V}\right|_{(V,T)}} </math> :<math>C^{(T)}_p(p,T)=C^{(T)}_V(V,T)-C^{(V)}_T(V,T) \frac{\left.\cfrac{\partial p}{\partial T}\right|_{(V,T)}}{\left.\cfrac{\partial p}{\partial V}\right|_{(V,T)}} </math> where :<math>\left.\frac{\partial p}{\partial V}\right|_{(V,T)}</math> denotes the [[partial derivative]] of <math>p(V,T)\ </math> with respect to <math>V\ </math> evaluated for <math>(V,T)\ </math> and :<math>\left.\frac{\partial p}{\partial T}\right|_{(V,T)}</math> denotes the partial derivative of <math>p(V,T)\ </math> with respect to <math>T\ </math> evaluated for <math>(V,T)\ </math>. The latent heats <math>C^{(V)}_T(V,T)\ </math> and <math>C^{(p)}_T(p,T)\ </math> are always of opposite sign.<ref>{{harvnb|Truesdell|Bharatha|1977|p=24}}</ref> It is common to refer to the ratio of specific heats as :<math>\gamma(V,T)=\frac{C^{(T)}_p(p,T)}{C^{(T)}_V(V,T)}</math> often just written as <math>\gamma=\frac{C_p}{C_V}</math>.<ref>{{harvnb|Truesdell|Bharatha|1977|pp=25}}</ref><ref>{{harvnb|Kondepudi|2008|pp=66β67}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Calorimetry
(section)
Add topic