Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Bilinear transform
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Transformation for a general first-order continuous-time filter == It is possible to relate the coefficients of a continuous-time, analog filter with those of a similar discrete-time digital filter created through the bilinear transform process. Transforming a general, first-order continuous-time filter with the given transfer function :<math>H_a(s) = \frac{b_0 s + b_1}{a_0 s + a_1} = \frac{b_0 + b_1 s^{-1}}{a_0 + a_1 s^{-1}}</math> using the bilinear transform (without prewarping any frequency specification) requires the substitution of :<math>s \leftarrow K \frac{1 - z^{-1}}{1 + z^{-1}}</math> where :<math>K \triangleq \frac{2}{T} </math>. However, if the frequency warping compensation as described below is used in the bilinear transform, so that both analog and digital filter gain and phase agree at frequency <math>\omega_0</math>, then :<math>K \triangleq \frac{\omega_0}{\tan\left(\frac{\omega_0 T}{2}\right)} </math>. This results in a discrete-time digital filter with coefficients expressed in terms of the coefficients of the original continuous time filter: :<math>H_d(z)=\frac{(b_0 K + b_1) + (-b_0 K + b_1)z^{-1}}{(a_0 K + a_1) + (-a_0 K + a_1)z^{-1}}</math> Normally the constant term in the denominator must be normalized to 1 before deriving the corresponding [[difference equation]]. This results in :<math>H_d(z)=\frac{\frac{b_0 K + b_1}{a_0 K + a_1} + \frac{-b_0 K + b_1}{a_0 K + a_1}z^{-1}}{1 + \frac{-a_0 K + a_1}{a_0 K + a_1}z^{-1}}. </math> The difference equation (using the [[Digital filter#Direct form I|Direct form I]]) is :<math> y[n] = \frac{b_0 K + b_1}{a_0 K + a_1} \cdot x[n] + \frac{-b_0 K + b_1}{a_0 K + a_1} \cdot x[n-1] - \frac{-a_0 K + a_1}{a_0 K + a_1} \cdot y[n-1] \ . </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Bilinear transform
(section)
Add topic