Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Bernoulli number
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definitions == Many characterizations of the Bernoulli numbers have been found in the last 300 years, and each could be used to introduce these numbers. Here only four of the most useful ones are mentioned: * a recursive equation, * an explicit formula, * a generating function, * an integral expression. For the proof of the [[Logical equivalence|equivalence]] of the four approaches, see {{harvp|Ireland|Rosen|1990}} or {{harvp|Conway|Guy|1996}}. === Recursive definition === The Bernoulli numbers obey the sum formulas{{r|Weisstein2016}} : <math> \begin{align} \sum_{k=0}^{m}\binom {m+1} k B^{-{}}_k &= \delta_{m, 0} \\ \sum_{k=0}^{m}\binom {m+1} k B^{+{}}_k &= m+1 \end{align}</math> where <math>m=0,1,2...</math> and {{math|''δ''}} denotes the [[Kronecker delta]]. The first of these is sometimes written<ref>Jordan (1950) p 233</ref> as the formula (for m > 1) <math display=block>(B+1)^m-B_m=0,</math> where the power is expanded formally using the binomial theorem and <math>B^k</math> is replaced by <math>B_k</math>. Solving for <math>B^{\mp{}}_m</math> gives the recursive formulas<ref>Ireland and Rosen (1990) p 229</ref> : <math>\begin{align} B_m^{-{}} &= \delta_{m, 0} - \sum_{k=0}^{m-1} \binom{m}{k} \frac{B^{-{}}_k}{m - k + 1} \\ B_m^+ &= 1 - \sum_{k=0}^{m-1} \binom{m}{k} \frac{B^+_k}{m - k + 1}. \end{align}</math> === Explicit definition === In 1893 [[Louis Saalschütz]] listed a total of 38 explicit formulas for the Bernoulli numbers,{{r|Saalschütz1893}} usually giving some reference in the older literature. One of them is (for <math>m\geq 1</math>): :<math>\begin{align} B^-_m &= \sum_{k=0}^m \frac1{k+1} \sum_{j=0}^k \binom{k}{j} (-1)^j j^m \\ B^+_m &= \sum_{k=0}^m \frac1{k+1} \sum_{j=0}^k \binom{k}{j} (-1)^j (j + 1)^m. \end{align}</math> === Generating function === The exponential [[generating function]]s are :<math>\begin{alignat}{3} \frac{t}{e^t - 1} &= \frac{t}{2} \left( \operatorname{coth} \frac{t}{2} -1 \right) &&= \sum_{m=0}^\infty \frac{B^{-{}}_m t^m}{m!}\\ \frac{te^t}{e^t - 1} = \frac{t}{1 - e^{-t}} &= \frac{t}{2} \left( \operatorname{coth} \frac{t}{2} +1 \right) &&= \sum_{m=0}^\infty \frac{B^+_m t^m}{m!}. \end{alignat}</math> where the substitution is <math>t \to - t</math>. The two generating functions only differ by ''t''. {{collapse top|title=Proof}} If we let <math>F(t)=\sum_{i=1}^\infty f_it^i</math> and <math>G(t)=1/(1+F(t))=\sum_{i=0}^\infty g_it^i</math> then :<math>G(t)=1-F(t)G(t).</math> Then <math>g_0=1</math> and for <math>m>0</math> the m{{sup|th}} term in the series for <math>G(t)</math> is: :<math>g_mt^i=-\sum_{j=0}^{m-1}f_{m-j}g_jt^m</math> If :<math>F(t)=\frac{e^t-1}t-1=\sum_{i=1}^\infty \frac{t^i}{(i+1)!}</math> then we find that :<math>G(t)=t/(e^t-1)</math> :<math>\begin{align} m!g_m&=-\sum_{j=0}^{m-1}\frac{m!}{j!}\frac{j!g_j}{(m-j+1)!}\\ &=-\frac 1{m+1}\sum_{j=0}^{m-1}\binom{m+1}jj!g_j\\ \end{align}</math> showing that the values of <math>i!g_i</math> obey the recursive formula for the Bernoulli numbers <math>B^-_i</math>. {{collapse bottom}} The (ordinary) generating function : <math> z^{-1} \psi_1(z^{-1}) = \sum_{m=0}^{\infty} B^+_m z^m</math> is an [[asymptotic series]]. It contains the [[trigamma function]] {{math|''ψ''<sub>1</sub>}}. === Integral Expression === From the generating functions above, one can obtain the following integral formula for the even Bernoulli numbers: :<math>B_{2n} = 4n (-1)^{n+1} \int_0^{\infty} \frac{t^{2n-1}}{e^{2 \pi t} -1 } \mathrm{d} t </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Bernoulli number
(section)
Add topic