Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Basis (linear algebra)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Change of basis == {{main|Change of basis}} Let {{math|''V''}} be a vector space of dimension {{mvar|n}} over a field {{math|''F''}}. Given two (ordered) bases <math>B_\text{old} = (\mathbf v_1, \ldots, \mathbf v_n)</math> and <math>B_\text{new} = (\mathbf w_1, \ldots, \mathbf w_n)</math> of {{math|''V''}}, it is often useful to express the coordinates of a vector {{mvar|x}} with respect to <math>B_\mathrm{old}</math> in terms of the coordinates with respect to <math>B_\mathrm{new}.</math> This can be done by the ''change-of-basis formula'', that is described below. The subscripts "old" and "new" have been chosen because it is customary to refer to <math>B_\mathrm{old}</math> and <math>B_\mathrm{new}</math> as the ''old basis'' and the ''new basis'', respectively. It is useful to describe the old coordinates in terms of the new ones, because, in general, one has [[expression (mathematics)|expressions]] involving the old coordinates, and if one wants to obtain equivalent expressions in terms of the new coordinates; this is obtained by replacing the old coordinates by their expressions in terms of the new coordinates. Typically, the new basis vectors are given by their coordinates over the old basis, that is, <math display="block">\mathbf w_j = \sum_{i=1}^n a_{i,j} \mathbf v_i.</math> If <math>(x_1, \ldots, x_n)</math> and <math>(y_1, \ldots, y_n)</math> are the coordinates of a vector {{math|'''x'''}} over the old and the new basis respectively, the change-of-basis formula is <math display="block">x_i = \sum_{j=1}^n a_{i,j}y_j,</math> for {{math|1=''i'' = 1, ..., ''n''}}. This formula may be concisely written in [[matrix (mathematics)|matrix]] notation. Let {{mvar|A}} be the matrix of the {{nowrap|<math>a_{i,j}</math>,}} and <math display="block">X= \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \quad \text{and} \quad Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}</math> be the [[column vector]]s of the coordinates of {{math|'''v'''}} in the old and the new basis respectively, then the formula for changing coordinates is <math display="block">X = A Y.</math> The formula can be proven by considering the decomposition of the vector {{math|'''x'''}} on the two bases: one has <math display="block">\mathbf x = \sum_{i=1}^n x_i \mathbf v_i,</math> and <math display="block">\mathbf x =\sum_{j=1}^n y_j \mathbf w_j = \sum_{j=1}^n y_j\sum_{i=1}^n a_{i,j}\mathbf v_i = \sum_{i=1}^n \biggl(\sum_{j=1}^n a_{i,j}y_j\biggr)\mathbf v_i.</math> The change-of-basis formula results then from the uniqueness of the decomposition of a vector over a basis, here {{nowrap|<math>B_\text{old}</math>;}} that is <math display="block">x_i = \sum_{j=1}^n a_{i,j} y_j,</math> for {{math|1=''i'' = 1, ..., ''n''}}.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Basis (linear algebra)
(section)
Add topic