Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Acoustic theory
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===For a moving medium=== Again, we can derive the small-disturbance limit for sound waves in a moving medium. Again, starting with : <math> \begin{align} \frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{v}+\mathbf{u}\cdot\nabla\rho' + \nabla\cdot \rho'\mathbf{v} & = 0 \\ (\rho_0+\rho')\frac{\partial \mathbf{v}}{\partial t} + (\rho_0+\rho')(\mathbf{u}\cdot\nabla)\mathbf{v} + (\rho_0+\rho')(\mathbf{v}\cdot\nabla)\mathbf{v} + \nabla p' & = 0 \end{align} </math> We can linearize these into : <math> \begin{align} \frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{v}+\mathbf{u}\cdot\nabla\rho' & = 0 \\ \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{u}\cdot\nabla)\mathbf{v} + \frac{1}{\rho_0}\nabla p' & = 0 \end{align} </math> ====For Irrotational Fluids in a Moving Medium==== Given that we saw that : <math> \begin{align} \frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{v}+\mathbf{u}\cdot\nabla\rho' & = 0 \\ \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{u}\cdot\nabla)\mathbf{v} + \frac{1}{\rho_0}\nabla p' & = 0 \end{align} </math> If we make the previous assumptions of the fluid being ideal and the velocity being irrotational, then we have : <math> \begin{align} p' & = \left(\frac{\partial p}{\partial \rho_{0}}\right)_{s}\rho' = c^{2}\rho' \\ \mathbf{v} & = -\nabla\phi \end{align} </math> Under these assumptions, our linearized sound equations become : <math> \begin{align} \frac{1}{c^2}\frac{\partial p'}{\partial t} -\rho_0\nabla^2\phi+\frac{1}{c^2}\mathbf{u}\cdot\nabla p' & = 0 \\ -\frac{\partial}{\partial t}(\nabla\phi) - (\mathbf{u}\cdot\nabla)[\nabla\phi] + \frac{1}{\rho_0}\nabla p' & = 0 \end{align} </math> Importantly, since <math>\mathbf{u}</math> is a constant, we have <math>(\mathbf{u}\cdot\nabla)[\nabla\phi] = \nabla[(\mathbf{u}\cdot\nabla)\phi]</math>, and then the second equation tells us that : <math> \frac{1}{\rho_0} \nabla p' = \nabla\left[\frac{\partial\phi}{\partial t} + (\mathbf{u}\cdot\nabla)\phi\right] </math> Or just that : <math> p' = \rho_{0}\left[\frac{\partial\phi}{\partial t} + (\mathbf{u}\cdot\nabla)\phi\right] </math> Now, when we use this relation with the fact that <math>\frac{1}{c^2}\frac{\partial p'}{\partial t} -\rho_0\nabla^2\phi+\frac{1}{c^2}\mathbf{u}\cdot\nabla p' = 0</math>, alongside cancelling and rearranging terms, we arrive at : <math> \frac{1}{c^2}\frac{\partial^2 \phi}{\partial t^2} - \nabla^2\phi + \frac{1}{c^2}\frac{\partial}{\partial t}[(\mathbf{u}\cdot\nabla)\phi] + \frac{1}{c^2}\frac{\partial}{\partial t}(\mathbf{u}\cdot\nabla\phi) + \frac{1}{c^2}\mathbf{u}\cdot\nabla[(\mathbf{u}\cdot\nabla)\phi] = 0 </math> We can write this in a familiar form as :<math> \left[\frac{1}{c^2}\left(\frac{\partial}{\partial t} + \mathbf{u}\cdot\nabla\right)^{2} - \nabla^{2}\right]\phi = 0 </math> This differential equation must be solved with the appropriate boundary conditions. Note that setting <math>\mathbf{u}=0</math> returns us the wave equation. Regardless, upon solving this equation for a moving medium, we then have :<math> \begin{align} \mathbf{v} & = -\nabla \phi \\ p' & = \rho_{0}\left(\frac{\partial}{\partial t} + \mathbf{u}\cdot\nabla\right)\phi\\ \rho' & = \frac{\rho_{0}}{c^{2}}\left(\frac{\partial}{\partial t} + \mathbf{u}\cdot\nabla\right)\phi \end{align} </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Acoustic theory
(section)
Add topic