Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Parabola
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== As the affine image of the unit parabola == [[File:Parabel-aff-s.svg|thumb|Parabola as an affine image of the unit parabola]] Another definition of a parabola uses [[affine transformation]]s: {{block indent | em = 1.5 | text = Any ''parabola'' is the affine image of the unit parabola with equation <math>y = x^2</math>.}} === Parametric representation === An affine transformation of the Euclidean plane has the form <math>\vec x \to \vec f_0 + A \vec x</math>, where <math>A</math> is a regular matrix ([[determinant]] is not 0), and <math>\vec f_0</math> is an arbitrary vector. If <math>\vec f_1, \vec f_2</math> are the column vectors of the matrix <math>A</math>, the unit parabola <math>(t, t^2),\ t \in \R</math> is mapped onto the parabola <math display="block">\vec x = \vec p(t) = \vec f_0 +\vec f_1 t +\vec f_2 t^2,</math> where * <math>\vec f_0</math> is a ''point'' of the parabola, * <math>\vec f_1</math> is a ''tangent vector'' at point <math>\vec f_0</math>, * <math>\vec f_2</math> is ''parallel to the axis'' of the parabola (axis of symmetry through the vertex). === Vertex === In general, the two vectors <math>\vec f_1, \vec f_2</math> are not perpendicular, and <math>\vec f_0</math> is ''not'' the vertex, unless the affine transformation is a [[Similarity (geometry)|similarity]]. The tangent vector at the point <math>\vec p(t)</math> is <math>\vec p'(t) = \vec f_1 + 2t \vec f_2</math>. At the vertex the tangent vector is orthogonal to <math>\vec f_2</math>. Hence the parameter <math>t_0</math> of the vertex is the solution of the equation <math display="block">\vec p'(t) \cdot \vec f_2 = \vec f_1 \cdot \vec f_2 + 2t f_2^2 = 0,</math> which is <math display="block">t_0 = -\frac{\vec f_1 \cdot \vec f_2}{2 f_2^2},</math> and the ''vertex'' is <math display="block">\vec p(t_0) = \vec f_0 - \frac{\vec f_1 \cdot \vec f_2}{2 f_2^2} \vec f_1 + \frac{(\vec f_1 \cdot \vec f_2)^2}{4(f_2^2)^2} \vec f_2.</math> === Focal length and focus === The ''focal length'' can be determined by a suitable parameter transformation (which does not change the geometric shape of the parabola). The focal length is <math display="block">f = \frac{f_1^2 \, f_2^2 - (\vec f_1 \cdot \vec f_2)^2}{4|f_2|^3}.</math> Hence the ''focus'' of the parabola is <math display="block">F:\ \vec f_0 - \frac{\vec f_1 \cdot \vec f_2}{2 f_2^2} \vec f_1 + \frac{f_1^2 \, f_2^2}{4(f_2^2)^2} \vec f_2.</math> === Implicit representation === Solving the parametric representation for <math>\; t, t^2\;</math> by [[Cramer's rule]] and using <math>\;t\cdot t-t^2 =0\; </math>, one gets the implicit representation <math display="block">\det(\vec x\!-\!\vec f\!_0,\vec f\!_2)^2-\det(\vec f\!_1,\vec x\!-\!\vec f\!_0)\det(\vec f\!_1,\vec f\!_2) = 0.</math> === Parabola in space === The definition of a parabola in this section gives a parametric representation of an arbitrary parabola, even in space, if one allows <math>\vec f\!_0, \vec f\!_1, \vec f\!_2</math> to be vectors in space.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Parabola
(section)
Add topic