Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Magic square
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===For squares of doubly even order=== When the squares are of doubly even order, we can construct a composite magic square in a manner more elegant than the above process, in the sense that every magic subsquare will have the same magic constant. Let ''n'' be the order of the main square and ''m'' the order of the equal subsquares. The subsquares are filled one by one, in any order, with a continuous sequence of ''m''<sup>2</sup>/2 smaller numbers (i.e. numbers less than or equal to ''n''<sup>2</sup>/2) together with their complements to ''n''<sup>2</sup> + 1. Each subsquare as a whole will yield the same magic sum. The advantage of this type of composite square is that each subsquare is filled in the same way and their arrangement is arbitrary. Thus, the knowledge of a single construction of even order will suffice to fill the whole square. Furthermore, if the subsquares are filled in the natural sequence, then the resulting square will be pandiagonal. The magic sum of the subsquares is related to the magic sum of the whole square by <math>M_m = \frac{M_n}{k}</math> where ''n'' = ''km''.<ref name="Sesiano2007"/> In the examples below, we have divided the order 12 square into nine subsquares of order 4 filled each with eight smaller numbers and, in the corresponding bishop's cells (two cells diagonally across, including wrap arounds, in the 4Γ4 subsquare), their complements to ''n''<sup>2</sup> + 1 = 145. Each subsquare is pandiagonal with magic constant 290; while the whole square on the left is also pandiagonal with magic constant 870. {{col-begin|width=auto;margin:0.5em auto}} {{col-break|valign=bottom}} {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:30em;height:30em;table-layout:fixed;" |- | style="background-color: silver;"|'''1''' || style="background-color: silver;"|142 || style="background-color: silver;"|139 || style="background-color: silver;"|'''8''' || '''9''' || 134 || 131 || '''16''' || style="background-color: silver;"|'''17''' || style="background-color: silver;"|126 || style="background-color: silver;"|123 || style="background-color: silver;"|'''24''' |- | style="background-color: silver;"|140 || style="background-color: silver;"|'''7''' || style="background-color: silver;"|'''2''' || style="background-color: silver;"|141 || 132 || '''15''' || '''10''' || 133 || style="background-color: silver;"|124 || style="background-color: silver;"|'''23''' || style="background-color: silver;"|'''18''' || style="background-color: silver;"|125 |- | style="background-color: silver;"|'''6''' || style="background-color: silver;"|137 || style="background-color: silver;"|144 || style="background-color: silver;"|'''3''' || '''14''' || 129 || 136 || '''11''' || style="background-color: silver;"|'''22''' || style="background-color: silver;"|121 || style="background-color: silver;"|128 || style="background-color: silver;"|'''19''' |- | style="background-color: silver;"|143 || style="background-color: silver;"|'''4''' || style="background-color: silver;"|'''5''' || style="background-color: silver;"|138 || 135 || '''12''' || '''13''' || 130 || style="background-color: silver;"|127 || style="background-color: silver;"|'''20''' || style="background-color: silver;"|'''21''' || style="background-color: silver;"|122 |- | '''25''' || 118 || 115 || '''32''' || style="background-color: silver;"|'''33''' || style="background-color: silver;"|110 || style="background-color: silver;"|107 || style="background-color: silver;"|'''40''' || '''41''' || 102 || 99 || '''48''' |- | 116 || '''31''' || '''26''' || 117 || style="background-color: silver;"|108 || style="background-color: silver;"|'''39''' || style="background-color: silver;"|'''34''' || style="background-color: silver;"|109 || 100 || '''47''' || '''42''' || 101 |- | '''30''' || 113 || 120 || '''27''' || style="background-color: silver;"|'''38''' || style="background-color: silver;"|105 || style="background-color: silver;"|112 || style="background-color: silver;"|'''35''' || '''46''' || 97 || 104 || '''43''' |- | 119 || '''28''' || '''29''' || 114 || style="background-color: silver;"|111 || style="background-color: silver;"|'''36''' || style="background-color: silver;"|'''37''' || style="background-color: silver;"|106 || 103 || '''44''' || '''45''' || 98 |- | style="background-color: silver;"|'''49''' || style="background-color: silver;"|94 || style="background-color: silver;"|91 || style="background-color: silver;"|'''56''' || '''57''' || 86 || 83 || '''64''' || style="background-color: silver;"|'''65''' || style="background-color: silver;"|78 || style="background-color: silver;"|75 || style="background-color: silver;"|'''72''' |- | style="background-color: silver;"|92 || style="background-color: silver;"|'''55''' || style="background-color: silver;"|'''50''' || style="background-color: silver;"|93 || 84 || '''63''' || '''58''' || 85 || style="background-color: silver;"|76 || style="background-color: silver;"|'''71''' || style="background-color: silver;"|'''66''' || style="background-color: silver;"|77 |- | style="background-color: silver;"|'''54''' || style="background-color: silver;"|89 || style="background-color: silver;"|96 || style="background-color: silver;"|'''51''' || '''62''' || 81 || 88 || '''59''' || style="background-color: silver;"|'''70''' || style="background-color: silver;"|73 || style="background-color: silver;"|80 || style="background-color: silver;"|'''67''' |- | style="background-color: silver;"|95 || style="background-color: silver;"|'''52''' || style="background-color: silver;"|'''53''' || style="background-color: silver;"|90 || 87 || '''60''' || '''61''' || 82 || style="background-color: silver;"|79 || style="background-color: silver;"|'''68''' || style="background-color: silver;"|'''69''' || style="background-color: silver;"|74 |} {{col-break|valign=bottom|gap=1em}} {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:30em;height:30em;table-layout:fixed;" |- | style="background-color: silver;"|'''69''' || style="background-color: silver;"|74 || style="background-color: silver;"|79 || style="background-color: silver;"|'''68''' || '''29''' || 114 || 119 || '''28''' || style="background-color: silver;"|'''61''' || style="background-color: silver;"|82 || style="background-color: silver;"|87 || style="background-color: silver;"|'''60''' |- | style="background-color: silver;"|75 || style="background-color: silver;"|'''72''' || style="background-color: silver;"|'''65''' || style="background-color: silver;"|78 || 115 || '''32''' || '''25''' || 118 || style="background-color: silver;"|83 || style="background-color: silver;"|'''64''' || style="background-color: silver;"|'''57''' || style="background-color: silver;"|86 |- | style="background-color: silver;"|'''66''' || style="background-color: silver;"|77 || style="background-color: silver;"|76 || style="background-color: silver;"|'''71''' || '''26''' || 117 || 116 || '''31''' || style="background-color: silver;"|'''58''' || style="background-color: silver;"|85 || style="background-color: silver;"|84 || style="background-color: silver;"|'''63''' |- | style="background-color: silver;"|80 || style="background-color: silver;"|'''67''' || style="background-color: silver;"|'''70''' || style="background-color: silver;"|73 || 120 || '''27''' || '''30''' || 113 || style="background-color: silver;"|88 || style="background-color: silver;"|'''59''' || style="background-color: silver;"|'''62''' || style="background-color: silver;"|81 |- | '''21''' || 122 || 127 || '''20''' || style="background-color: silver;"|'''53''' || style="background-color: silver;"|90 || style="background-color: silver;"|95 || style="background-color: silver;"|'''52''' || '''13''' || 130 || 135 || '''12''' |- | 123 || '''24''' || '''17''' || 126 || style="background-color: silver;"|91 || style="background-color: silver;"|'''56''' || style="background-color: silver;"|'''49''' || style="background-color: silver;"|94 || 131 || '''16''' || '''9''' || 134 |- | '''18''' || 125 || 124 || '''23''' || style="background-color: silver;"|'''50''' || style="background-color: silver;"|93 || style="background-color: silver;"|92 || style="background-color: silver;"|'''55''' || '''10''' || 133 || 132 || '''15''' |- | 128 || '''19''' || '''22''' || 121 || style="background-color: silver;"|96 || style="background-color: silver;"|'''51''' || style="background-color: silver;"|'''54''' || style="background-color: silver;"|89 || 136 || '''11''' || '''14''' || 129 |- | style="background-color: silver;"|'''45''' || style="background-color: silver;"|98 || style="background-color: silver;"|103 || style="background-color: silver;"|'''44''' || '''5''' || 138 || 143 || '''4''' || style="background-color: silver;"|'''37''' || style="background-color: silver;"|106 || style="background-color: silver;"|111 || style="background-color: silver;"|'''36''' |- | style="background-color: silver;"|99 || style="background-color: silver;"|'''48''' || style="background-color: silver;"|'''41''' || style="background-color: silver;"|102 || 139 || '''8''' || '''1''' || 142 || style="background-color: silver;"|107 || style="background-color: silver;"|'''40''' || style="background-color: silver;"|'''33''' || style="background-color: silver;"|110 |- | style="background-color: silver;"|'''42''' || style="background-color: silver;"|101 || style="background-color: silver;"|100 || style="background-color: silver;"|'''47''' || '''2''' || 141 || 140 || '''7''' || style="background-color: silver;"|'''34''' || style="background-color: silver;"|109 || style="background-color: silver;"|108 || style="background-color: silver;"|'''39''' |- | style="background-color: silver;"|104 || style="background-color: silver;"|'''43''' || style="background-color: silver;"|'''46''' || style="background-color: silver;"|97 || 144 || '''3''' || '''6''' || 137 || style="background-color: silver;"|112 || style="background-color: silver;"|'''35''' || style="background-color: silver;"|'''38''' || style="background-color: silver;"|105 |} {{col-end}} In another example below, we have divided the order 12 square into four order 6 squares. Each of the order 6 squares are filled with eighteen small numbers and their complements using bordering technique given by al-Antaki. If we remove the shaded borders of the order 6 subsquares and form an order 8 square, then this order 8 square is again a magic square. In its full generality, we can take any ''m''<sup>2</sup>/2 smaller numbers together with their complements to ''n''<sup>2</sup> + 1 to fill the subsquares, not necessarily in continuous sequence. {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:30em;height:30em;table-layout:fixed;" |- | style="background-color: silver;"|'''60''' || style="background-color: silver;"|82 || style="background-color: silver;"|88 || style="background-color: silver;"|'''56''' || style="background-color: silver;"|90 || style="border-right:solid; background-color: silver;"|'''59''' || style="background-color: silver;"|'''24''' || style="background-color: silver;"|118 || style="background-color: silver;"|124 || style="background-color: silver;"|'''20''' || style="background-color: silver;"|126 || style="background-color: silver;"|'''23''' |- | style="background-color: silver;"|'''64''' || '''69''' || 74 || 79 || '''68''' || style="border-right:solid; background-color: silver;"|81 || style="background-color: silver;"|'''28''' || '''33''' || 110 || 115 || '''32''' || style="background-color: silver;"|117 |- | style="background-color: silver;"|83 || 75 || '''72''' || '''65''' || 78 || style="border-right:solid; background-color: silver;"| '''62''' || style="background-color: silver;"|119 || 111 || '''36''' || '''29''' || 114 || style="background-color: silver;"|'''26''' |- | style="background-color: silver;"|84 || '''66''' || 77 || 76 || '''71''' || style="border-right:solid; background-color: silver;"| '''61''' || style="background-color: silver;"|120 || '''30''' || 113 || 112 || '''35''' || style="background-color: silver;"|'''25''' |- | style="background-color: silver;"|'''58''' || 80 || '''67''' || '''70''' || 73 || style="border-right:solid; background-color: silver;"|87 || style="background-color: silver;"|'''22''' || 116 || '''31''' || '''34''' || 109 || style="background-color: silver;"|123 |- | style="border-bottom:solid; background-color: silver;"|86 || style="border-bottom:solid; background-color: silver;"| '''63''' || style="border-bottom:solid; background-color: silver;"| '''57''' || style="border-bottom:solid; background-color: silver;"| 89 || style="border-bottom:solid; background-color: silver;"| '''55''' || style="border-right:solid; border-bottom:solid; background-color: silver;"| 85 || style="border-bottom:solid; background-color: silver;"| 122 || style="border-bottom:solid; background-color: silver;"| '''27''' || style="border-bottom:solid; background-color: silver;"| '''21''' || style="border-bottom:solid; background-color: silver;"|125 || style="border-bottom:solid; background-color: silver;"| '''19''' || style="border-bottom:solid; background-color: silver;"|121 |- | style="background-color: silver;"|'''6''' || style="background-color: silver;"|136 || style="background-color: silver;"|142 || style="background-color: silver;"|'''2''' || style="background-color: silver;"|144 || style="border-right:solid; background-color: silver;"| '''5''' || style="background-color: silver;"|'''42''' || style="background-color: silver;"|100 || style="background-color: silver;"|106 || style="background-color: silver;"|'''38''' || style="background-color: silver;"|108 || style="background-color: silver;"|'''41''' |- | style="background-color: silver;"|'''10''' || '''15''' || 128 || 133 || '''14''' || style="border-right:solid; background-color: silver;"|135 || style="background-color: silver;"|'''46''' || '''51''' || 92 || 97 || '''50''' || style="background-color: silver;"|99 |- | style="background-color: silver;"|137 || 129 || '''18''' || '''11''' || 132 || style="border-right:solid; background-color: silver;"| '''8''' || style="background-color: silver;"|101 || 93 || '''54''' || '''47''' || 96 || style="background-color: silver;"|'''44''' |- | style="background-color: silver;"|138 || '''12''' || 131 || 130 || '''17''' || style="border-right:solid; background-color: silver;"| '''7''' || style="background-color: silver;"|102 || '''48''' || 95 || 94 || '''53''' || style="background-color: silver;"|'''43''' |- | style="background-color: silver;"|'''4''' || 134 || '''13''' || '''16''' || 127 || style="border-right:solid; background-color: silver;"|141 || style="background-color: silver;"|'''40''' || 98 || '''49''' || '''52''' || '''91''' || style="background-color: silver;"|105 |- | style="background-color: silver;"|140 || style="background-color: silver;"|'''9''' || style="background-color: silver;"|'''3''' || style="background-color: silver;"|143 || style="background-color: silver;"|'''1''' || style="border-right:solid; background-color: silver;"|139 || style="background-color: silver;"|104 || style="background-color: silver;"|'''45''' || style="background-color: silver;"|'''39''' || style="background-color: silver;"|107 || style="background-color: silver;"|'''37''' || style="background-color: silver;"|103 |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Magic square
(section)
Add topic