Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Fusion power
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Radioactive waste === {{See also|Radioactive waste}} Fusion reactors create far less radioactive material than fission reactors. Further, the material it creates is less damaging biologically, and the radioactivity dissipates within a time period that is well within existing engineering capabilities for safe long-term waste storage.<ref name="demonstration">{{Cite journal |last1=Gonzalez de Vicente |first1=Sehila M. |last2=Smith |first2=Nicholas A. |last3=El-Guebaly |first3=Laila |last4=Ciattaglia |first4=Sergio |last5=Di Pace |first5=Luigi |last6=Gilbert |first6=Mark |last7=Mandoki |first7=Robert |last8=Rosanvallon |first8=Sandrine |last9=Someya |first9=Youji |last10=Tobita |first10=Kenji |last11=Torcy |first11=David |date=August 1, 2022 |title=Overview on the management of radioactive waste from fusion facilities: ITER, demonstration machines and power plants |journal=Nuclear Fusion |volume=62 |issue=8 |pages=085001 |doi=10.1088/1741-4326/ac62f7 |bibcode=2022NucFu..62h5001G |s2cid=247920590 |issn=0029-5515|doi-access=free }}</ref> In specific terms, except in the case of [[aneutronic fusion]],<ref>{{Cite book|last1=Harms|first1=A. A.|url=https://books.google.com/books?id=DD0sZgutqowC&pg=PA8|title=Principles of Fusion Energy: An Introduction to Fusion Energy for Students of Science and Engineering|last2=Schoepf|first2=Klaus F.|last3=Kingdon|first3=David Ross|date=2000|publisher=World Scientific|isbn=978-9812380333|language=en}}</ref><ref>{{Cite journal|last1=Carayannis|first1=Elias G.|last2=Draper|first2=John|last3=Iftimie|first3=Ion A.|date=2020|title=Nuclear Fusion Diffusion: Theory, Policy, Practice, and Politics Perspectives |url=https://ieeexplore.ieee.org/document/9078039|journal=IEEE Transactions on Engineering Management|volume=69 |issue=4 |pages=1237β1251|doi=10.1109/TEM.2020.2982101|s2cid=219001461|issn=1558-0040}}</ref> the neutron flux turns the structural materials radioactive. The amount of radioactive material at shut-down may be comparable to that of a fission reactor, with important differences. The half-lives of fusion and neutron activation [[radioisotopes]] tend to be less than those from fission, so that the hazard decreases more rapidly. Whereas fission reactors produce waste that remains radioactive for thousands of years, the radioactive material in a fusion reactor (other than tritium) would be the reactor core itself and most of this would be radioactive for about 50 years, with other low-level waste being radioactive for another 100 years or so thereafter.<ref>{{cite journal |first1=Anil |last1=Markandya |first2=Paul |last2=Wilkinson |s2cid=25504602 |url=http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(07)61253-7/fulltext |journal=The Lancet |volume=370 |issue=9591 |year=2007 |title=Electricity generation and health |pages=979β990 |doi=10.1016/S0140-6736(07)61253-7 |pmid=17876910 |access-date=February 21, 2018}}</ref> The fusion waste's short half-life eliminates the challenge of long-term storage. By 500 years, the material would have the same [[radiotoxicity]] as [[coal ash]].<ref name="WorldEnergyCouncil">{{cite web |last1=Hamacher |first1=T. |last2=Bradshaw |first2=A. M. |date=October 2001 |title=Fusion as a Future Power Source: Recent Achievements and Prospects |url=http://www.worldenergy.org/wec-geis/publications/default/tech_papers/18th_Congress/downloads/ds/ds6/ds6_5.pdf |archive-url=https://web.archive.org/web/20040506065141/http://www.worldenergy.org/wec-geis/publications/default/tech_papers/18th_Congress/downloads/ds/ds6/ds6_5.pdf |archive-date=May 6, 2004 |publisher=World Energy Council}}</ref> Nonetheless, classification as intermediate level waste rather than low-level waste may complicate safety discussions.<ref>{{Cite journal|last1=Nicholas|first1=T. E. G.|last2=Davis|first2=T. P.|last3=Federici|first3=F.|last4=Leland|first4=J.|last5=Patel|first5=B. S.|last6=Vincent|first6=C.|last7=Ward|first7=S. H.|date=February 1, 2021|title=Re-examining the role of nuclear fusion in a renewables-based energy mix|url=https://www.sciencedirect.com/science/article/pii/S0301421520307540|journal=Energy Policy|language=en|volume=149|pages=112043|doi=10.1016/j.enpol.2020.112043|issn=0301-4215|arxiv=2101.05727|bibcode=2021EnPol.14912043N |s2cid=230570595}}</ref><ref name="demonstration" /> The choice of materials is less constrained than in conventional fission, where many materials are required for their specific [[neutron cross-section]]s. Fusion reactors can be designed using "low activation", materials that do not easily become radioactive. [[Vanadium]], for example, becomes much less radioactive than [[stainless steel]].<ref>{{Cite journal |last1=Cheng |first1=E. T. |last2=Muroga |first2=Takeo |date=2001 |title=Reuse of Vanadium Alloys in Power Reactors |url=http://dx.doi.org/10.13182/fst01-a11963369 |journal=Fusion Technology |volume=39 |issue=2P2 |pages=981β985 |bibcode=2001FuTec..39..981C |doi=10.13182/fst01-a11963369 |issn=0748-1896 |s2cid=124455585}}</ref> [[Carbon fiber]] materials are also low-activation, are strong and light, and are promising for laser-inertial reactors where a magnetic field is not required.<ref>{{Cite journal|last1=Streckert|first1=H. H.|last2=Schultz|first2=K. R.|last3=Sager|first3=G. T.|last4=Kantncr|first4=R. D.|date=December 1, 1996|title=Conceptual Design of Low Activation Target Chamber and Components for the National Ignition Facility|url=https://doi.org/10.13182/FST96-A11962981|journal=Fusion Technology|volume=30|issue=3P2A|pages=448β451|doi=10.13182/FST96-A11962981|bibcode=1996FuTec..30..448S |issn=0748-1896|citeseerx=10.1.1.582.8236}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Fusion power
(section)
Add topic