Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Ellipse
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Circumference=== {{Main|Perimeter of an ellipse}} {{further|Meridian arc#Quarter meridian}} [[File:Ellipses same circumference.png|thumb|Ellipses with same circumference]] The circumference <math>C</math> of an ellipse is: <math display="block">C \,=\, 4a\int_0^{\pi/2}\sqrt {1 - e^2 \sin^2\theta}\ d\theta \,=\, 4 a \,E(e)</math> where again <math>a</math> is the length of the semi-major axis, <math display="inline">e=\sqrt{1 - b^2/a^2}</math> is the eccentricity, and the function <math>E</math> is the [[complete elliptic integral of the second kind]], <math display="block">E(e) \,=\, \int_0^{\pi/2}\sqrt {1 - e^2 \sin^2\theta}\ d\theta</math> which is in general not an [[elementary function]]. The circumference of the ellipse may be evaluated in terms of <math>E(e)</math> using [[arithmetic-geometric mean|Gauss's arithmetic-geometric mean]];<ref>{{dlmf|first=B. C.|last=Carlson|id=19.8.E6|title=Elliptic Integrals}}</ref> this is a quadratically converging iterative method (see [[Elliptic integral#Computation|here]] for details). The exact [[infinite series]] is: <math display="block">\begin{align} \frac C{2\pi a} &= 1 - \left(\frac{1}{2}\right)^2e^2 - \left(\frac{1\cdot 3}{2\cdot 4}\right)^2\frac{e^4}{3} - \left(\frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}\right)^2\frac{e^6}{5} - \cdots \\ &= 1 - \sum_{n=1}^\infty \left(\frac{(2n-1)!!}{(2n)!!}\right)^2 \frac{e^{2n}}{2n-1} \\ &= -\sum_{n=0}^\infty \left(\frac{(2n-1)!!}{(2n)!!}\right)^2 \frac{e^{2n}}{2n-1}, \end{align} </math> where <math>n!!</math> is the [[double factorial]] (extended to negative odd integers in the usual way, giving <math>(-1)!! = 1</math> and <math>(-3)!! = -1</math>). This series converges, but by expanding in terms of <math>h = (a-b)^2 / (a+b)^2,</math> [[James Ivory (mathematician)|James Ivory]],<ref>{{cite journal |last = Ivory |first = J. |title = A new series for the rectification of the ellipsis |author-link = James Ivory (mathematician) |journal = Transactions of the Royal Society of Edinburgh |year = 1798 |volume = 4 |issue = 2 |pages = 177{{ndash}}190 |url =https://books.google.com/books?id=FaUaqZZYYPAC&pg=PA177 |doi=10.1017/s0080456800030817 |s2cid = 251572677 }}</ref> [[Friedrich Wilhelm Bessel|Bessel]]<ref>{{cite journal |ref = {{harvid|Bessel|1825}} |last = Bessel |first = F. W. |title = The calculation of longitude and latitude from geodesic measurements (1825) |author-link = Friedrich Bessel |journal = [[Astron. Nachr.]] |year = 2010 |volume = 331 |number = 8 |pages = 852{{ndash}}861 |arxiv = 0908.1824 |doi = 10.1002/asna.201011352 |bibcode = 2010AN....331..852K |s2cid = 118760590 }} English translation of {{cite journal |first1= F. W. | last1=Bessel | doi=10.1002/asna.18260041601 | year=1825 | bibcode=1825AN......4..241B |title=Über die Berechnung der geographischen Längen und Breiten aus geodätischen Vermesssungen | journal=[[Astron. Nachr.]] |volume=4 |issue=16 |pages =241{{ndash}}254 |arxiv=0908.1823 | s2cid=118630614 | language=de }}</ref> and [[Ernst Kummer|Kummer]]<ref name=Linderholm95>{{cite journal |title=An Overlooked Series for the Elliptic Perimeter |first1=Carl E. |last1=Linderholm |first2=Arthur C. |last2=Segal |journal=Mathematics Magazine |volume=68 |issue=3 |pages=216–220 |date=June 1995 |doi=10.1080/0025570X.1995.11996318 }} which cites to {{cite journal |last=Kummer |first=Ernst Eduard |author-link=Ernst Kummer |title=Uber die Hypergeometrische Reihe |language=de |trans-title=About the hypergeometric series |journal=[[Journal für die Reine und Angewandte Mathematik]] |volume=15 |issue=1, 2 |year=1836 |pages=39–83, 127–172 |doi=10.1515/crll.1836.15.39 |url=https://archive.org/details/sim_journal-fuer-die-reine-und-angewandte-mathematik_1836_15 }}</ref> derived a series that converges much more rapidly. It is most concisely written in terms of the [[Binomial coefficient#Binomial coefficient with n = 1/2|binomial coefficient with <math>n = 1/2</math>]]: <math display="block">\begin{align} \frac{C}{\pi(a+b)} &= \sum_{n=0}^\infty {\frac 12 \choose n}^2 h^n \\ &= \sum_{n=0}^\infty \left(\frac{(2n-3)!!}{(2n)!!}\right)^2 h^n \\ &= \sum_{n=0}^\infty \left(\frac{(2n-3)!!}{2^n n!}\right)^2 h^n \\ &= \sum_{n=0}^\infty \left(\frac{1}{(2n-1)4^n}\binom{2n}{n}\right)^2 h^n \\ &= 1 + \frac{h}{4} + \frac{h^2}{64} + \frac{h^3}{256} + \frac{25\,h^4}{16384} + \frac{49\,h^5}{65536} + \frac{441\,h^6}{2^{20}} + \frac{1089\,h^7}{2^{22}} + \cdots. \end{align}</math> The coefficients are slightly smaller (by a factor of <math>2n-1</math>), but also <math>e^4/16 \le h \le e^4</math> is numerically much smaller than <math>e</math> except at <math>h = e = 0</math> and <math>h = e = 1</math>. For eccentricities less than 0.5 {{nobr|(<math>h < 0.005</math>),}} the error is at the limits of [[double-precision floating-point]] after the <math>h^4</math> term.<ref name=Cook23>{{cite web |title=Comparing approximations for ellipse perimeter |date=28 May 2023 |first=John D. |last=Cook |website=John D. Cook Consulting blog |url=https://www.johndcook.com/blog/2023/05/28/approximate-ellipse-perimeter/ |access-date=2024-09-16 }}</ref> [[Srinivasa Ramanujan]] gave two close [[approximations]] for the circumference in §16 of "Modular Equations and Approximations to <math>\pi</math>";<ref>{{cite journal |last=Ramanujan |first=Srinivasa |author-link=Srinivasa Ramanujan |title=Modular Equations and Approximations to ''π'' |journal = Quart. J. Pure App. Math. |volume = 45 |pages = 350{{ndash}}372 |year = 1914 |url = http://ramanujan.sirinudi.org/Volumes/published/ram06.pdf#page=24 |isbn = 978-0-8218-2076-6 }}</ref> they are <math display="block">\frac C\pi \approx 3(a + b) - \sqrt{(3a + b)(a + 3b)} = 3(a + b) - \sqrt{3(a+b)^2 + 4ab}</math> and <math display="block">\frac C{\pi(a+b)} \approx 1+\frac{3h}{10+\sqrt{4-3h}},</math> where <math>h</math> takes on the same meaning as above. The errors in these approximations, which were obtained empirically, are of order <math>h^3</math> and <math>h^5,</math> respectively.<ref name=Villarino>{{cite arXiv |eprint=math.CA/0506384 |title=Ramanujan's Perimeter of an Ellipse |first=Mark B. |last=Villarino |date=20 June 2005 |quote=We present a detailed analysis of Ramanujan’s most accurate approximation to the perimeter of an ellipse.}} In particular, the second equation underestimates the circumference by <math>\pi(a+b)h^5\theta(h),</math> where <math>22.888\cdot 10^{-6} < 3\cdot 2^{-17} < \theta(h) \le 4\left(1 - \frac{7\pi}{22}\right) < 1.60935\cdot10^{-3}</math> is an increasing function of <math>0 \le h \le 1.</math></ref><ref>{{cite web |title=Error in Ramanujan's approximation for ellipse perimeter |date=22 September 2024 |first=John D. |last=Cook |website=John D. Cook Consulting blog |url=https://www.johndcook.com/blog/2024/09/22/ellipse-perimeter-approx/ |access-date=2024-12-01 |quote=the relative error when {{math|''b'' {{=}} 1}} and {{mvar|a}} varies ... is bound by {{math|4/''π'' − 14/11 {{=}} 0.00051227…}}. }}</ref> This is because the second formula's infinite series expansion matches Ivory's formula up to the <math>h^4</math> term.{{r|Villarino|p=3}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Ellipse
(section)
Add topic