Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Magic square
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===For squares of order ''m Γ n'' where ''m'', ''n'' > 2=== This is a method reminiscent of the [[Kronecker product]] of two matrices, that builds an ''nm'' Γ ''nm'' magic square from an ''n'' Γ ''n'' magic square and an ''m'' Γ ''m'' magic square.<ref name="hartleym">Hartley, M. [http://www.dr-mikes-math-games-for-kids.com/making-big-magic-squares.html "Making Big Magic Squares"].</ref> The "product" of two magic squares creates a magic square of higher order than the two multiplicands. Let the two magic squares be of orders ''m'' and ''n''. The final square will be of order ''m Γ n''. Divide the square of order ''m Γ n'' into ''m Γ m'' sub-squares, such that there are a total of ''n''<sup>2</sup> such sub-squares. In the square of order ''n'', reduce by 1 the value of all the numbers. Multiply these reduced values by ''m''<sup>2</sup>, and place the results in the corresponding sub-squares of the ''m Γ n'' whole square. The squares of order ''m'' are added ''n''<sup>2</sup> times to the sub-squares of the final square. The peculiarity of this construction method is that each magic subsquare will have different magic sums. The square made of such magic sums from each magic subsquare will again be a magic square. The smallest composite magic square of order 9, composed of two order 3 squares is given below. {{col-begin|width=auto;margin:0.5em auto}} {{col-break|valign=bottom}} {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:6em;height:6em;table-layout:fixed;" |- |+ Order 3 |- | 8 || 1 || 6 |- | 3 || 5 || 7 |- | 4 || 9 || 2 |} {{col-break|valign=bottom|gap=1em}} {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:18em;height:18em;table-layout:fixed;" |- |+ Order 3Γ3 | style="background-color: silver;"|63 || style="background-color: silver;"|63 || style="background-color: silver;"|63 || 0 || 0 || 0 || style="background-color: silver;"|45 || style="background-color: silver;"|45 || style="background-color: silver;"|45 |- | style="background-color: silver;"|63 || style="background-color: silver;"|63 || style="background-color: silver;"|63 || 0 || 0 || 0 || style="background-color: silver;"|45 || style="background-color: silver;"|45 || style="background-color: silver;"|45 |- | style="background-color: silver;"|63 || style="background-color: silver;"|63 || style="background-color: silver;"|63 || 0 || 0 || 0 || style="background-color: silver;"|45 || style="background-color: silver;"|45 || style="background-color: silver;"|45 |- | 18 || 18 || 18 || style="background-color: silver;"|36 || style="background-color: silver;"|36 || style="background-color: silver;"|36 || 54 || 54 || 54 |- | 18 || 18 || 18 || style="background-color: silver;"|36 || style="background-color: silver;"|36 || style="background-color: silver;"|36 || 54 || 54 || 54 |- | 18 || 18 || 18 || style="background-color: silver;"|36 || style="background-color: silver;"|36 || style="background-color: silver;"|36 || 54 || 54 || 54 |- | style="background-color: silver;"|27 || style="background-color: silver;"|27 || style="background-color: silver;"|27 || 72 || 72 || 72 || style="background-color: silver;"|9 || style="background-color: silver;"|9 || style="background-color: silver;"|9 |- | style="background-color: silver;"|27 || style="background-color: silver;"|27 || style="background-color: silver;"|27 || 72 || 72 || 72 || style="background-color: silver;"|9 || style="background-color: silver;"|9 || style="background-color: silver;"|9 |- | style="background-color: silver;"|27 || style="background-color: silver;"|27 || style="background-color: silver;"|27 || 72 || 72 || 72 || style="background-color: silver;"|9 || style="background-color: silver;"|9 || style="background-color: silver;"|9 |} {{col-break|valign=bottom|gap=1em}} {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:18em;height:18em;table-layout:fixed;" |- |+ Order 3Γ3 | style="background-color: silver;"|71 || style="background-color: silver;"|64 || style="background-color: silver;"|69 || 8 || 1 || 6 || style="background-color: silver;"|53 || style="background-color: silver;"|46 || style="background-color: silver;"|51 |- | style="background-color: silver;"|66 || style="background-color: silver;"|68 || style="background-color: silver;"|70 || 3 || 5 || 7 || style="background-color: silver;"|48 || style="background-color: silver;"|50 || style="background-color: silver;"|52 |- | style="background-color: silver;"|67 || style="background-color: silver;"|72 || style="background-color: silver;"|65 || 4 || 9 || 2 || style="background-color: silver;"|49 || style="background-color: silver;"|54 || style="background-color: silver;"|47 |- | 26 || 19 || 24 || style="background-color: silver;"|44 || style="background-color: silver;"|37 || style="background-color: silver;"|42 || 62 || 55 || 60 |- | 21 || 23 || 25 || style="background-color: silver;"|39 || style="background-color: silver;"|41 || style="background-color: silver;"|43 || 57 || 59 || 61 |- | 22 || 27 || 20 || style="background-color: silver;"|40 || style="background-color: silver;"|45 || style="background-color: silver;"|38 || 58 || 63 || 56 |- | style="background-color: silver;"|35 || style="background-color: silver;"|28 || style="background-color: silver;"|33 || 80 || 73 || 78 || style="background-color: silver;"|17 || style="background-color: silver;"|10 || style="background-color: silver;"|15 |- | style="background-color: silver;"|30 || style="background-color: silver;"|32 || style="background-color: silver;"|34 || 75 || 77 || 79 || style="background-color: silver;"|12 || style="background-color: silver;"|14 || style="background-color: silver;"|16 |- | style="background-color: silver;"|31 || style="background-color: silver;"|36 || style="background-color: silver;"|29 || 76 || 81 || 74 || style="background-color: silver;"|13 || style="background-color: silver;"|18 || style="background-color: silver;"|11 |} {{col-end}} Since each of the 3Γ3 sub-squares can be independently rotated and reflected into 8 different squares, from this single 9Γ9 composite square we can derive 8<sup>9</sup> = 134,217,728 essentially different 9Γ9 composite squares. Plenty more composite magic squares can also be derived if we select non-consecutive numbers in the magic sub-squares, like in Yang Hui's version of the 9Γ9 composite magic square. The next smallest composite magic squares of order 12, composed of magic squares of order 3 and 4 are given below. {{col-begin|width=auto;margin:0.5em auto}} {{col-break|valign=bottom}} {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:6em;height:6em;table-layout:fixed;" |- |+ Order 3 |- | 2 || 9 || 4 |- | 7 || 5 || 3 |- | 6 || 1 || 8 |} {{col-break|valign=bottom|gap=1em}} {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:8em;height:8em;table-layout:fixed;" |- |+ Order 4 |- | 1 || 14 || 11 || 8 |- | 12 || 7 || 2 || 13 |- | 6 || 9 || 16 || 3 |- | 15 || 4 || 5 || 10 |} {{col-break|valign=bottom|gap=1em}} {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:30em;height:30em;table-layout:fixed;" |- |+ Order 3 Γ 4 |- | style="background-color: silver;"|2 || style="background-color: silver;"|9 || style="background-color: silver;"|4 || 119 || 126 || 121 || style="background-color: silver;"|92 || style="background-color: silver;"|99 || style="background-color: silver;"|94 || 65 || 72 || 67 |- | style="background-color: silver;"|7 || style="background-color: silver;"|5 || style="background-color: silver;"|3 || 124 || 122 || 120 || style="background-color: silver;"|97 || style="background-color: silver;"|95 || style="background-color: silver;"|93 || 70 || 68 || 66 |- | style="background-color: silver;"|6 || style="background-color: silver;"|1 || style="background-color: silver;"|8 || 123 || 118 || 125 || style="background-color: silver;"|96 || style="background-color: silver;"|91 || style="background-color: silver;"|98 || 69 || 64 || 71 |- | 101 || 108 || 103 || style="background-color: silver;"|56 || style="background-color: silver;"|63 || style="background-color: silver;"|58 || 11 || 18 || 13 || style="background-color: silver;"|110 || style="background-color: silver;"|117 || style="background-color: silver;"|112 |- | 106 || 104 || 102 || style="background-color: silver;"|61 || style="background-color: silver;"|59 || style="background-color: silver;"|57 || 16 || 14 || 12 || style="background-color: silver;"|115 || style="background-color: silver;"|113 || style="background-color: silver;"|111 |- | 105 || 100 || 107 || style="background-color: silver;"|60 || style="background-color: silver;"|55 || style="background-color: silver;"|62 || 15 || 10 || 17 || style="background-color: silver;"|114 || style="background-color: silver;"|109 || style="background-color: silver;"|116 |- | style="background-color: silver;"|47 || style="background-color: silver;"|54 || style="background-color: silver;"|49 || 74 || 81 || 76 || style="background-color: silver;"|137 || style="background-color: silver;"|144 || style="background-color: silver;"|139 || 20 || 27 || 22 |- | style="background-color: silver;"|52 || style="background-color: silver;"|50 || style="background-color: silver;"|48 || 79 || 77 || 75 || style="background-color: silver;"|142 || style="background-color: silver;"|140 || style="background-color: silver;"|138 || 25 || 23 || 21 |- | style="background-color: silver;"|51 || style="background-color: silver;"|46 || style="background-color: silver;"|53 || 78 || 73 || 80 || style="background-color: silver;"|141 || style="background-color: silver;"|136 || style="background-color: silver;"|143 || 24 || 19 || 26 |- | 128 || 135 || 130 || style="background-color: silver;"|29 || style="background-color: silver;"|36 || style="background-color: silver;"|31 || 38 || 45 || 40 || style="background-color: silver;"|83 || style="background-color: silver;"|90 || style="background-color: silver;"|85 |- | 133 || 131 || 129 || style="background-color: silver;"|34 || style="background-color: silver;"|32 || style="background-color: silver;"|30 || 43 || 41 || 39 || style="background-color: silver;"|88 || style="background-color: silver;"|86 || style="background-color: silver;"|84 |- | 132 || 127 || 134 || style="background-color: silver;"|33 || style="background-color: silver;"|28 || style="background-color: silver;"|35 || 42 || 37 || 44 || style="background-color: silver;"|87 || style="background-color: silver;"|82 || style="background-color: silver;"|89 |} {{col-break|valign=bottom|gap=1em}} {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:30em;height:30em;table-layout:fixed;" |- |+ Order 4 Γ 3 |- | style="background-color: silver;"|17 || style="background-color: silver;"|30 || style="background-color: silver;"|27 || style="background-color: silver;"|24 || 129 || 142 || 139 || 136 || style="background-color: silver;"|49 || style="background-color: silver;"|62 || style="background-color: silver;"|59 || style="background-color: silver;"|56 |- | style="background-color: silver;"|28 || style="background-color: silver;"|23 || style="background-color: silver;"|18 || style="background-color: silver;"|29 || 140 || 135 || 130 || 141 || style="background-color: silver;"|60 || style="background-color: silver;"|55 || style="background-color: silver;"|50 || style="background-color: silver;"|61 |- | style="background-color: silver;"|22 || style="background-color: silver;"|25 || style="background-color: silver;"|32 || style="background-color: silver;"|19 || 134 || 137 || 144 || 131 || style="background-color: silver;"|54 || style="background-color: silver;"|57 || style="background-color: silver;"|64 || style="background-color: silver;"|51 |- | style="background-color: silver;"|31 || style="background-color: silver;"|20 || style="background-color: silver;"|21 || style="background-color: silver;"|26 || 143 || 132 || 133 || 138 || style="background-color: silver;"|63 || style="background-color: silver;"|52 || style="background-color: silver;"|53 || style="background-color: silver;"|58 |- | 97 || 110 || 107 || 104 || style="background-color: silver;"|65 || style="background-color: silver;"|78 || style="background-color: silver;"|75 || style="background-color: silver;"|72 || 33 || 46 || 43 || 40 |- | 108 || 103 || 98 || 109 || style="background-color: silver;"|76 || style="background-color: silver;"|71 || style="background-color: silver;"|66 || style="background-color: silver;"|77 || 44 || 39 || 34 || 45 |- | 102 || 105 || 112 || 99 || style="background-color: silver;"|70 || style="background-color: silver;"|73 || style="background-color: silver;"|80 || style="background-color: silver;"|67 || 38 || 41 || 48 || 35 |- | 111 || 100 || 101 || 106 || style="background-color: silver;"|79 || style="background-color: silver;"|68 || style="background-color: silver;"|69 || style="background-color: silver;"|74 || 47 || 36 || 37 || 42 |- | style="background-color: silver;"|81 || style="background-color: silver;"|94 || style="background-color: silver;"|91 || style="background-color: silver;"|88 || 1 || 14 || 11 || 8 || style="background-color: silver;"|113 || style="background-color: silver;"|126 || style="background-color: silver;"|123 || style="background-color: silver;"|120 |- | style="background-color: silver;"|92 || style="background-color: silver;"|87 || style="background-color: silver;"|82 || style="background-color: silver;"|93 || 12 || 7 || 2 || 13 || style="background-color: silver;"|124 || style="background-color: silver;"|119 || style="background-color: silver;"|114 || style="background-color: silver;"|125 |- | style="background-color: silver;"|86 || style="background-color: silver;"|89 || style="background-color: silver;"|96 || style="background-color: silver;"|83 || 6 || 9 || 16 || 3 || style="background-color: silver;"|118 || style="background-color: silver;"|121 || style="background-color: silver;"|128 || style="background-color: silver;"|115 |- | style="background-color: silver;"|95 || style="background-color: silver;"|84 || style="background-color: silver;"|85 || style="background-color: silver;"|90 || 15 || 4 || 5 || 10 || style="background-color: silver;"|127 || style="background-color: silver;"|116 || style="background-color: silver;"|117 || style="background-color: silver;"|122 |} {{col-end}} For the base squares, there is only one essentially different 3rd order square, while there 880 essentially different 4th-order squares that we can choose from. Each pairing can produce two different composite squares. Since each magic sub-squares in each composite square can be expressed in 8 different forms due to rotations and reflections, there can be 1Γ880Γ8<sup>9</sup> + 880Γ1Γ8<sup>16</sup> β 2.476Γ10<sup>17</sup> essentially different 12Γ12 composite magic squares created this way, with consecutive numbers in each sub-square. In general, if there are ''c''<sub>m</sub> and ''c''<sub>n</sub> essentially different magic squares of order ''m'' and ''n'', then we can form ''c''<sub>m</sub> Γ ''c''<sub>n</sub> Γ ( 8<sup>''m''<sup>2</sup></sup> + 8<sup>''n''<sup>2</sup></sup>) composite squares of order ''mn'', provided ''m'' β ''n''. If ''m'' = ''n'', then we can form (''c''<sub>m</sub>)<sup>2</sup> Γ 8<sup>''m''<sup>2</sup></sup> composite squares of order ''m''<sup>2</sup>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Magic square
(section)
Add topic