Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Fourier transform
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Locally compact abelian groups === {{Main|Pontryagin duality}} The Fourier transform may be generalized to any [[locally compact abelian group]], i.e., an [[abelian group]] that is also a [[locally compact Hausdorff space]] such that the group operation is continuous. If {{mvar|G}} is a locally compact abelian group, it has a translation invariant measure {{mvar|μ}}, called [[Haar measure]]. For a locally compact abelian group {{mvar|G}}, the set of irreducible, i.e. one-dimensional, unitary representations are called its [[character group|characters]]. With its natural group structure and the topology of uniform convergence on compact sets (that is, the topology induced by the [[compact-open topology]] on the space of all continuous functions from <math>G</math> to the [[circle group]]), the set of characters {{mvar|Ĝ}} is itself a locally compact abelian group, called the ''Pontryagin dual'' of {{mvar|G}}. For a function {{mvar|f}} in {{math|''L''<sup>1</sup>(''G'')}}, its Fourier transform is defined by{{sfn|Katznelson|2004}} <math display="block">\hat{f}(\xi) = \int_G \xi(x)f(x)\,d\mu\quad \text{for any }\xi \in \hat{G}.</math> The Riemann–Lebesgue lemma holds in this case; {{math|''f̂''(''ξ'')}} is a function vanishing at infinity on {{mvar|Ĝ}}. The Fourier transform on {{nobr|{{mvar|T}} {{=}} R/Z}} is an example; here {{mvar|T}} is a locally compact abelian group, and the Haar measure {{mvar|μ}} on {{mvar|T}} can be thought of as the Lebesgue measure on [0,1). Consider the representation of {{mvar|T}} on the complex plane {{mvar|C}} that is a 1-dimensional complex vector space. There are a group of representations (which are irreducible since {{mvar|C}} is 1-dim) <math>\{e_{k}: T \rightarrow GL_{1}(C) = C^{*} \mid k \in Z\}</math> where <math>e_{k}(x) = e^{i 2\pi kx}</math> for <math>x\in T</math>. The character of such representation, that is the trace of <math>e_{k}(x)</math> for each <math>x\in T</math> and <math>k\in Z</math>, is <math>e^{i 2\pi kx}</math> itself. In the case of representation of finite group, the character table of the group {{mvar|G}} are rows of vectors such that each row is the character of one irreducible representation of {{mvar|G}}, and these vectors form an orthonormal basis of the space of class functions that map from {{mvar|G}} to {{mvar|C}} by Schur's lemma. Now the group {{mvar|T}} is no longer finite but still compact, and it preserves the orthonormality of character table. Each row of the table is the function <math>e_{k}(x)</math> of <math>x\in T,</math> and the inner product between two class functions (all functions being class functions since {{mvar|T}} is abelian) <math>f,g \in L^{2}(T, d\mu)</math> is defined as <math display="inline">\langle f, g \rangle = \frac{1}{|T|}\int_{[0,1)}f(y)\overline{g}(y)d\mu(y)</math> with the normalizing factor <math>|T|=1</math>. The sequence <math>\{e_{k}\mid k\in Z\}</math> is an orthonormal basis of the space of class functions <math>L^{2}(T,d\mu)</math>. For any representation {{mvar|V}} of a finite group {{mvar|G}}, <math>\chi_{v}</math> can be expressed as the span <math display="inline">\sum_{i} \left\langle \chi_{v},\chi_{v_{i}} \right\rangle \chi_{v_{i}}</math> (<math>V_{i}</math> are the irreps of {{mvar|G}}), such that <math display="inline">\left\langle \chi_{v}, \chi_{v_{i}} \right\rangle = \frac{1}{|G|}\sum_{g\in G}\chi_{v}(g)\overline{\chi}_{v_{i}}(g)</math>. Similarly for <math>G = T</math> and <math>f\in L^{2}(T, d\mu)</math>, <math display="inline">f(x) = \sum_{k\in Z}\hat{f}(k)e_{k}</math>. The Pontriagin dual <math>\hat{T}</math> is <math>\{e_{k}\}(k\in Z)</math> and for <math>f \in L^{2}(T, d\mu)</math>, <math display="inline">\hat{f}(k) = \frac{1}{|T|}\int_{[0,1)}f(y)e^{-i 2\pi ky}dy</math> is its Fourier transform for <math>e_{k} \in \hat{T}</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Fourier transform
(section)
Add topic