Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Vitamin C
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Discovery === {{Further|Vitamin#History}} Vitamin C was discovered in 1912, isolated in 1928 and synthesized in 1933, making it the first vitamin to be synthesized.<ref name=Squires>{{cite book |vauthors=Squires VR |title=The role of food, agriculture, forestry and fisheries in human nutrition - Volume IV |date=2011 |publisher=EOLSS Publications |isbn=978-1-84826-195-2 |page=121 |url=https://books.google.com/books?id=VJWoCwAAQBAJ&pg=PA121 |access-date=September 17, 2017 |archive-date=January 11, 2023 |archive-url=https://web.archive.org/web/20230111085247/https://books.google.com/books?id=VJWoCwAAQBAJ&pg=PA121 |url-status=live }}</ref> Shortly thereafter [[Tadeus Reichstein]] succeeded in synthesizing the vitamin in bulk by what is now called the [[Reichstein process]].<ref name="pmid356548">{{cite book | vauthors = Stacey M, Manners DJ | title = Advances in carbohydrate chemistry and biochemistry | chapter = Edmund Langley Hirst | volume = 35 | pages = 1–29 | year = 1978 | pmid = 356548 | doi = 10.1016/S0065-2318(08)60217-6 | isbn = 978-0-12-007235-4 }}</ref> This made possible the inexpensive mass-production of vitamin C. In 1934, [[Hoffmann–La Roche]] bought the Reichstein process patent, trademarked synthetic vitamin C under the brand name [[Redoxon]], and began to market it as a dietary supplement.<ref name=Roche1934>{{cite web|url=http://www.trademarkia.com/redoxon-71350953.html|title=Redoxon trademark information by Hoffman-la Roche, Inc. (1934)|access-date=December 25, 2017|archive-date=November 16, 2018|archive-url=https://web.archive.org/web/20181116044212/https://www.trademarkia.com/redoxon-71350953.html|url-status=live}}</ref><ref name="Wang-2016">{{cite book | chapter-url = https://books.google.com/books?id=WgamCgAAQBAJ&pg=PA161 | chapter = Industrial fermentation of Vitamin C | vauthors = Wang W, Xu H | year = 2016 | page = 161 | title = Industrial biotechnology of vitamins, biopigments, and antioxidants | veditors = Vandamme EJ, Revuelta JI | publisher = Wiley-VCH Verlag GmbH & Co. KGaA. | isbn = 978-3-527-33734-7 }}</ref> In 1907, a laboratory animal model which would help to identify the antiscorbutic factor was [[Serendipity|serendipitously]] discovered by the Norwegian physicians [[Axel Holst]] and [[Theodor Frølich]], who when studying shipboard [[beriberi]], fed [[guinea pig]]s their test diet of grains and flour and were surprised when scurvy resulted instead of beriberi. Unknown at that time, this species did not make its own vitamin C (being a [[caviomorph]]), whereas mice and rats do.<ref name="pmid12555613">{{cite journal | vauthors = Norum KR, Grav HJ | title = [Axel Holst and Theodor Frolich--pioneers in the combat of scurvy] | language = no | journal = Tidsskrift for den Norske Laegeforening | volume = 122 | issue = 17 | pages = 1686–7 | date = June 2002 | pmid = 12555613 }}</ref> In 1912, the [[Poland|Polish]] biochemist [[Casimir Funk]] developed the concept of [[vitamin]]s. One of these was thought to be the anti-scorbutic factor. In 1928, this was referred to as "water-soluble C", although its chemical structure had not been determined.<ref name="pmid9105273">{{cite journal | vauthors = Rosenfeld L | title = Vitamine--vitamin. The early years of discovery | journal = Clinical Chemistry | volume = 43 | issue = 4 | pages = 680–5 | date = April 1997 | doi = 10.1093/clinchem/43.4.680 | pmid = 9105273 | doi-access = free | title-link = doi }}</ref> [[File:Albert Szent-Györgyi.jpg|thumb|right|upright|[[Albert Szent-Györgyi]], pictured here in 1948, was awarded the 1937 [[Nobel Prize in Physiology or Medicine|Nobel Prize in Medicine]] "for his discoveries in connection with the biological combustion processes, with special reference to vitamin{{nbsp}}C and the catalysis of fumaric acid".<ref name="pmid19239412"/>|alt=Albert Szent-Györgyi was awarded the Nobel Prize in Medicine in part for his research on vitamin C]] From 1928 to 1932, [[Albert Szent-Györgyi]] and Joseph L. Svirbely's Hungarian team, and [[Charles Glen King]]'s American team, identified the anti-scorbutic factor. Szent-Györgyi isolated hexuronic acid from animal adrenal glands, and suspected it to be the antiscorbutic factor.<ref name="pmid16744896">{{cite journal | vauthors = Svirbely JL, Szent-Györgyi A | title = The chemical nature of vitamin C | journal = The Biochemical Journal | volume = 26 | issue = 3 | pages = 865–70 | year = 1932 | pmid = 16744896 | pmc = 1260981 | doi = 10.1126/science.75.1944.357-a | bibcode = 1932Sci....75..357K }}</ref> In late 1931, Szent-Györgyi gave Svirbely the last of his adrenal-derived hexuronic acid with the suggestion that it might be the anti-scorbutic factor. By the spring of 1932, King's laboratory had proven this, but published the result without giving Szent-Györgyi credit for it. This led to a bitter dispute over priority.<ref name="pmid16744896" /> In 1933, [[Walter Norman Haworth]] chemically identified the vitamin as {{sm|l}}-hexuronic acid, proving this by synthesis in 1933.<ref name="pmid11963399">{{cite journal | vauthors = Juhász-Nagy S | title = [Albert Szent-Györgyi--biography of a free genius] | language = hu | journal = Orvosi Hetilap | volume = 143 | issue = 12 | pages = 611–4 | date = March 2002 | pmid = 11963399 }}</ref><ref name="pmid4589872">{{cite journal | vauthors = Kenéz J | title = [Eventful life of a scientist. 80th birthday of Nobel prize winner Albert Szent-Györgyi] | language = de | journal = Munchener Medizinische Wochenschrift | volume = 115 | issue = 51 | pages = 2324–6 | date = December 1973 | pmid = 4589872 }}</ref><ref name="pmid4612454">{{cite journal | vauthors = Szállási A | title = [2 interesting early articles by Albert Szent-Györgyi] | language = hu | journal = Orvosi Hetilap | volume = 115 | issue = 52 | pages = 3118–9 | date = December 1974 | pmid = 4612454 }}</ref><ref name="url_NLM_Profiles_Szent-Gyorgyi">{{cite web |url=http://profiles.nlm.nih.gov/WG/Views/Exhibit/narrative/szeged.html |title=The Albert Szent-Gyorgyi Papers: Szeged, 1931-1947: Vitamin C, Muscles, and WWII |work=Profiles in Science |publisher=United States National Library of Medicine |url-status=live |archive-url=https://web.archive.org/web/20090505232208/http://profiles.nlm.nih.gov/WG/Views/Exhibit/narrative/szeged.html |archive-date=May 5, 2009 }}</ref> Haworth and Szent-Györgyi proposed that L-hexuronic acid be named a-scorbic acid, and chemically {{sm|l}}-ascorbic acid, in honor of its activity against scurvy.<ref name="url_NLM_Profiles_Szent-Gyorgyi"/><ref name=Squires /> The term's etymology is from Latin, "a-" meaning away, or off from, while -scorbic is from Medieval Latin ''scorbuticus'' (pertaining to scurvy), cognate with Old Norse ''skyrbjugr'', French ''scorbut'', Dutch ''scheurbuik'' and Low German ''scharbock''.<ref name="Online Entymology Dictionary-2015">{{cite web |url=https://www.etymonline.com/word/scurvy |title=Scurvy |publisher=Online Entymology Dictionary |access-date=November 19, 2017 |archive-date=December 15, 2020 |archive-url=https://web.archive.org/web/20201215135611/https://www.etymonline.com/word/scurvy |url-status=live }}</ref> Partly for this discovery, Szent-Györgyi was awarded the 1937 [[Nobel Prize in Physiology or Medicine|Nobel Prize in Medicine]],<ref name="pmid19239412">{{cite journal | vauthors = Zetterström R | title = Nobel Prize 1937 to Albert von Szent-Györgyi: identification of vitamin C as the anti-scorbutic factor | journal = Acta Paediatrica | volume = 98 | issue = 5 | pages = 915–19 | date = May 2009 | pmid = 19239412 | doi = 10.1111/j.1651-2227.2009.01239.x | s2cid = 11077461 }}</ref> and Haworth shared that year's [[Nobel Prize in Chemistry]].<ref name="pmid15416703">{{cite journal |vauthors=Hirst EL |title=Sir Norman Haworth |journal=Nature |volume=165 |issue=4198 |pages=587 |date=April 1950 |pmid=15416703 |doi=10.1038/165587a0 |bibcode=1950Natur.165..587H |url=}}</ref> In 1957, J. J. Burns showed that some mammals are susceptible to scurvy as their [[liver]] does not produce the [[enzyme]] [[L-gulonolactone oxidase|{{sm|l}}-gulonolactone oxidase]], the last of the chain of four enzymes that synthesize vitamin C.<ref name="pmid13385237">{{cite journal | vauthors = Burns JJ, Evans C | title = The synthesis of L-ascorbic acid in the rat from D-glucuronolactone and L-gulonolactone | journal = The Journal of Biological Chemistry | volume = 223 | issue = 2 | pages = 897–905 | date = December 1956 | doi = 10.1016/S0021-9258(18)65088-4 | pmid = 13385237 | url = https://www.jbc.org/article/S0021-9258(18)65088-4/pdf | doi-access = free | title-link = doi | format = PDF | access-date = December 3, 2022 | archive-date = December 3, 2022 | archive-url = https://web.archive.org/web/20221203231846/https://www.jbc.org/article/S0021-9258(18)65088-4/pdf | url-status = live }}</ref><ref name="pmid13380431">{{cite journal | vauthors = Burns JJ, Moltz A, Peyser P | title = Missing step in guinea pigs required for the biosynthesis of L-ascorbic acid | journal = Science | volume = 124 | issue = 3232 | pages = 1148–9 | date = December 1956 | pmid = 13380431 | doi = 10.1126/science.124.3232.1148-a | bibcode = 1956Sci...124.1148B }}</ref> American biochemist [[Irwin Stone]] was the first to exploit vitamin C for its food preservative properties. He later developed the idea that humans possess a mutated form of the {{sm|l}}-gulonolactone oxidase coding gene.<ref name="pmid1672383">{{cite journal | vauthors = Henson DE, Block G, Levine M | title = Ascorbic acid: biologic functions and relation to cancer | journal = Journal of the National Cancer Institute | volume = 83 | issue = 8 | pages = 547–50 | date = April 1991 | pmid = 1672383 | doi = 10.1093/jnci/83.8.547 | url = https://zenodo.org/record/1234351 | access-date = March 18, 2020 | archive-date = December 25, 2020 | archive-url = https://web.archive.org/web/20201225062602/https://zenodo.org/record/1234351 | url-status = live | doi-access = free | title-link = doi }}</ref> Stone introduced Linus Pauling to the theory that humans needed to consume vitamin C in quantities far higher than what was considered a recommended daily intake in order to optimize health.<ref name=IrwinStone>{{cite web |url=http://www.orthomolecular.org/history/index.shtml |title=Orthomolecular Medicine Hall of fame - Irwin Stone, Ph.D. | vauthors = Saul A |date= |website=Orthomolecular Organization |access-date=December 25, 2023 |archive-date=August 9, 2011 |archive-url=https://web.archive.org/web/20110809145751/http://www.orthomolecular.org/history/index.shtml |url-status=live }}</ref> In 2008, researchers discovered that in humans and other primates the [[red blood cell]]s have evolved a mechanism to more efficiently utilize the vitamin C present in the body by recycling oxidized {{sm|l}}-dehydroascorbic acid (DHA) back into ascorbic acid for reuse by the body. The mechanism was not found to be present in mammals that synthesize their own vitamin C.<ref name="pmid18358815">{{cite journal | vauthors = Montel-Hagen A, Kinet S, Manel N, Mongellaz C, Prohaska R, Battini JL, Delaunay J, Sitbon M, Taylor N |s2cid = 18128118 |title = Erythrocyte Glut1 triggers dehydroascorbic acid uptake in mammals unable to synthesize vitamin C |journal = Cell |volume = 132 |issue = 6 |pages = 1039–48 |date = March 2008 |pmid = 18358815 |doi = 10.1016/j.cell.2008.01.042| doi-access = | title-link = doi }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Vitamin C
(section)
Add topic