Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Singular value decomposition
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Scale-invariant SVD === The singular values of a matrix {{tmath|\mathbf A}} are uniquely defined and are invariant with respect to left and/or right unitary transformations of {{tmath|\mathbf A.}} In other words, the singular values of {{tmath|\mathbf U \mathbf A \mathbf V,}} for unitary matrices {{tmath|\mathbf U}} and {{tmath|\mathbf V,}} are equal to the singular values of {{tmath|\mathbf A.}} This is an important property for applications in which it is necessary to preserve Euclidean distances and invariance with respect to rotations. The Scale-Invariant SVD, or SI-SVD,<ref>{{citation|last=Uhlmann |first=Jeffrey |author-link=Jeffrey Uhlmann |title=A Generalized Matrix Inverse that is Consistent with Respect to Diagonal Transformations |series=SIAM Journal on Matrix Analysis |year=2018 |volume=239 |issue=2 |pages=781β800 |url=http://faculty.missouri.edu/uhlmannj/UC-SIMAX-Final.pdf |url-status=dead |archive-url=https://web.archive.org/web/20190617095052id_/http://faculty.missouri.edu/uhlmannj/UC-SIMAX-Final.pdf |archive-date= 2019-06-17}}</ref> is analogous to the conventional SVD except that its uniquely-determined singular values are invariant with respect to diagonal transformations of {{tmath|\mathbf A.}} In other words, the singular values of {{tmath|\mathbf D \mathbf A \mathbf E,}} for invertible diagonal matrices {{tmath|\mathbf D}} and {{tmath|\mathbf E,}} are equal to the singular values of {{tmath|\mathbf A.}} This is an important property for applications for which invariance to the choice of units on variables (e.g., metric versus imperial units) is needed.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Singular value decomposition
(section)
Add topic