Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Bernoulli number
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assorted identities === {{unordered list |1 = [[Umbral calculus]] gives a compact form of Bernoulli's formula by using an abstract symbol {{math|'''B'''}}: : <math>S_m(n) = \frac 1 {m+1} ((\mathbf{B} + n)^{m+1} - B_{m+1}) </math> where the symbol {{math|'''B'''<sup>''k''</sup>}} that appears during binomial expansion of the parenthesized term is to be replaced by the Bernoulli number {{math|''B<sub>k</sub>''}} (and {{math|''B''<sub>1</sub> {{=}} +{{sfrac|1|2}}}}). More suggestively and mnemonically, this may be written as a definite integral: :<math>S_m(n) = \int_0^n (\mathbf{B}+x)^m\,dx </math> Many other Bernoulli identities can be written compactly with this symbol, e.g. :<math> (1-2\mathbf{B})^m = (2-2^m) B_m </math> |2 = Let {{math|''n''}} be non-negative and even :<math> \zeta(n) = \frac{(-1)^{\frac{n}{2} - 1} B_n (2\pi)^n}{2(n!)}</math> |3 = The {{math|''n''}}th [[cumulant]] of the [[uniform distribution (continuous)|uniform]] [[probability distribution]] on the interval [−1, 0] is {{math|{{sfrac|''B''<sub>''n''</sub>|''n''}}}}. |4 = Let {{math|''n''? {{=}} {{sfrac|1|''n''!}}}} and {{math|''n'' ≥ 1}}. Then {{math|''B''<sub>''n''</sub>}} is the following {{math|(''n'' + 1) × (''n'' + 1)}} determinant:{{r|Malenfant2011}} : <math> \begin{align} B_n & = n! \begin{vmatrix} 1 & 0 & \cdots & 0 & 1 \\ 2? & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ n? & (n-1)? & \cdots & 1 & 0 \\ (n+1)? & n? & \cdots & 2? & 0 \end{vmatrix} \\[8pt] & = n! \begin{vmatrix} 1 & 0 & \cdots & 0 & 1 \\ \frac{1}{2!} & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ \frac{1}{n!} & \frac{1}{(n-1)!} & \cdots & 1 & 0 \\ \frac{1}{(n+1)!} & \frac{1}{n!} & \cdots & \frac{1}{2!} & 0 \end{vmatrix} \end{align} </math> Thus the determinant is {{math|''σ''<sub>''n''</sub>(1)}}, the [[Stirling polynomial]] at {{math|''x'' {{=}} 1}}. |5 = For even-numbered Bernoulli numbers, {{math|''B''<sub>2''p''</sub>}} is given by the {{math|(''p'' + 1) × (''p'' + 1)}} determinant::{{r|Malenfant2011}} :<math> B_{2p} = -\frac{(2p)!}{2^{2p} - 2} \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 & 1 \\ \frac{1}{3!} & 1 & 0 & \cdots & 0 & 0 \\ \frac{1}{5!} & \frac{1}{3!} & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots& \vdots \\ \frac{1}{(2p+1)!} & \frac{1}{(2p-1)!} & \frac{1}{(2p-3)!} &\cdots & \frac{1}{3!} & 0 \end{vmatrix}</math> |6 = Let {{math|''n'' ≥ 1}}. Then ([[Leonhard Euler]])<ref>Euler, E41, Inventio summae cuiusque seriei ex dato termino generali </ref> : <math> \frac{1}{n} \sum_{k=1}^n \binom{n}{k}B_k B_{n-k}+B_{n-1}=-B_n </math> |7 = Let {{math|''n'' ≥ 1}}. Then{{r|vonEttingshausen1827}} : <math> \sum_{k=0}^n \binom{n+1}k (n+k+1)B_{n+k}=0 </math> |8 = Let {{math|''n'' ≥ 0}}. Then ([[Leopold Kronecker]] 1883) : <math> B_n = - \sum_{k=1}^{n+1} \frac{(-1)^k}{k} \binom{n+1}{k} \sum_{j=1}^k j^n </math> |9 = Let {{math|''n'' ≥ 1}} and {{math|''m'' ≥ 1}}. Then{{r|Carlitz1968}} : <math> (-1)^m \sum_{r=0}^m \binom{m}{r} B_{n+r}=(-1)^n \sum_{s=0}^n \binom{n}{s} B_{m+s} </math> |10 = Let {{math|''n'' ≥ 4}} and : <math> H_n=\sum_{k=1}^n k^{-1} </math> the [[harmonic number]]. Then (H. Miki 1978) : <math> \frac{n}{2}\sum_{k=2}^{n-2}\frac{B_{n-k}}{n-k}\frac{B_k}{k} - \sum_{k=2}^{n-2} \binom{n}{k}\frac{B_{n-k}}{n-k} B_k =H_n B_n</math> |11 = Let {{math|''n'' ≥ 4}}. [[Yuri Matiyasevich]] found (1997) : <math> (n+2)\sum_{k=2}^{n-2}B_k B_{n-k}-2\sum_{l=2}^{n-2}\binom{n+2}{l} B_l B_{n-l}=n(n+1)B_n </math> |12 = ''Faber–[[Rahul Pandharipande|Pandharipande]]–[[Zagier]]–Gessel identity'': for {{math|''n'' ≥ 1}}, : <math> \frac{n}{2}\left(B_{n-1}(x)+\sum_{k=1}^{n-1}\frac{B_{k}(x)}{k} \frac{B_{n-k}(x)}{n-k}\right) -\sum_{k=0}^{n-1}\binom{n}{k}\frac{B_{n-k}} {n-k} B_k(x) =H_{n-1}B_n(x).</math> Choosing {{math|''x'' {{=}} 0}} or {{math|''x'' {{=}} 1}} results in the Bernoulli number identity in one or another convention. |13 = The next formula is true for {{math|''n'' ≥ 0}} if {{math|''B''<sub>1</sub> {{=}} ''B''<sub>1</sub>(1) {{=}} {{sfrac|1|2}}}}, but only for {{math|''n'' ≥ 1}} if {{math|''B''<sub>1</sub> {{=}} ''B''<sub>1</sub>(0) {{=}} −{{sfrac|1|2}}}}. :<math> \sum_{k=0}^n \binom{n}{k} \frac{B_k}{n-k+2} = \frac{B_{n+1}}{n+1} </math> |14 = Let {{math|''n'' ≥ 0}}. Then :<math> -1 + \sum_{k=0}^n \binom{n}{k} \frac{2^{n-k+1}}{n-k+1}B_k(1) = 2^n </math> and :<math> -1 + \sum_{k=0}^n \binom{n}{k} \frac{2^{n-k+1}}{n-k+1}B_{k}(0) = \delta_{n,0} </math> |15 = A reciprocity relation of M. B. Gelfand:{{r|AgohDilcher2008}} : <math> (-1)^{m+1} \sum_{j=0}^k \binom{k}{j} \frac{B_{m+1+j}}{m+1+j} + (-1)^{k+1} \sum_{j=0}^m \binom{m}{j}\frac{B_{k+1+j}}{k+1+j} = \frac{k!m!}{(k+m+1)!} </math> }}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Bernoulli number
(section)
Add topic