Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Zero-sum game
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Solving === The [[Nash equilibrium]] for a two-player, zero-sum game can be found by solving a [[linear programming]] problem. Suppose a zero-sum game has a payoff matrix {{mvar|M}} where element {{math|''M''{{sub|''i'',''j''}}}} is the payoff obtained when the minimizing player chooses pure strategy {{mvar|i}} and the maximizing player chooses pure strategy {{mvar|j}} (i.e. the player trying to minimize the payoff chooses the row and the player trying to maximize the payoff chooses the column). Assume every element of {{mvar|M}} is positive. The game will have at least one Nash equilibrium. The Nash equilibrium can be found (Raghavan 1994, p. 740) by solving the following linear program to find a vector {{mvar|u}}: {{block indent|em=1.2|text= Minimize: <math display="block">\sum_{i} u_i</math> Subject to the constraints: {{block indent|em=1.2|text={{math|''u'' β₯ 0}}}} {{block indent|em=1.2|text={{math|''M u'' β₯ 1}}.}}}} The first constraint says each element of the {{mvar|u}} vector must be nonnegative, and the second constraint says each element of the {{mvar|M u}} vector must be at least 1. For the resulting {{mvar|u}} vector, the inverse of the sum of its elements is the value of the game. Multiplying {{mvar|u}} by that value gives a probability vector, giving the probability that the maximizing player will choose each possible pure strategy. If the game matrix does not have all positive elements, add a constant to every element that is large enough to make them all positive. That will increase the value of the game by that constant, and will not affect the equilibrium mixed strategies for the equilibrium. The equilibrium mixed strategy for the minimizing player can be found by solving the dual of the given linear program. Alternatively, it can be found by using the above procedure to solve a modified payoff matrix which is the transpose and negation of {{mvar|M}} (adding a constant so it is positive), then solving the resulting game. If all the solutions to the linear program are found, they will constitute all the Nash equilibria for the game. Conversely, any linear program can be converted into a two-player, zero-sum game by using a change of variables that puts it in the form of the above equations and thus such games are equivalent to linear programs, in general.<ref>Ilan Adler (2012) The equivalence of linear programs and zero-sum games. Springer</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Zero-sum game
(section)
Add topic