Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Zeeman effect
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Weak field (Zeeman effect)== If the [[spin–orbit interaction]] dominates over the effect of the external magnetic field, <math>\vec L</math> and <math>\vec S</math> are not separately conserved, only the total angular momentum <math>\vec J = \vec L + \vec S</math> is. The spin and orbital angular momentum vectors can be thought of as [[precession|precessing]] about the (fixed) total angular momentum vector <math>\vec J</math>. The (time-)"averaged" spin vector is then the projection of the spin onto the direction of <math>\vec J</math>: <math display="block"> \vec S_\text{avg} = \frac{(\vec S \cdot \vec J)}{J^2} \vec J, </math> and for the (time-)"averaged" orbital vector: <math display="block"> \vec L_\text{avg} = \frac{(\vec L \cdot \vec J)}{J^2} \vec J. </math> Thus <math display="block"> \langle V_\text{M} \rangle = \frac{\mu_\text{B}}{\hbar} \vec J \left(g_L\frac{\vec L \cdot \vec J}{J^2} + g_S\frac{\vec S \cdot \vec J}{J^2}\right) \cdot \vec B. </math> Using <math>\vec L = \vec J - \vec S</math> and squaring both sides, we get <math display="block"> \vec S \cdot \vec J = \frac{1}{2} (J^2 + S^2 - L^2) = \frac{\hbar^2}{2} [j(j + 1) - l(l + 1) + s(s + 1)], </math> and using <math>\vec S = \vec J - \vec L</math> and squaring both sides, we get <math display="block"> \vec L \cdot \vec J = \frac{1}{2} (J^2 - S^2 + L^2) = \frac{\hbar^2}{2} [j(j + 1) + l(l + 1) - s(s + 1)]. </math> Combining everything and taking <math>J_z = \hbar m_j</math>, we obtain the magnetic potential energy of the atom in the applied external magnetic field: <math display="block">\begin{align} V_\text{M} &= \mu_\text{B} B m_j \left[g_L \frac{j(j + 1) + l(l + 1) - s(s + 1)}{2j(j + 1)} + g_S \frac{j(j + 1) - l(l + 1) + s(s + 1)}{2j(j + 1)}\right] \\ &= \mu_\text{B} B m_j \left[1 + (g_S - 1) \frac{j(j + 1) - l(l + 1) + s(s + 1)}{2j(j + 1)}\right] \\ &= \mu_\text{B} B m_j g_J, \end{align}</math> where the quantity in square brackets is the [[Landé g-factor]] <math>g_J</math> of the atom (<math>g_L = 1,</math> <math>g_S \approx 2</math>), and <math>m_j</math> is the ''z'' component of the total angular momentum. For a single electron above filled shells, with <math>s = 1/2</math> and <math>j = l \pm s</math>, the Landé g-factor can be simplified to <math display="block"> g_J = 1 \pm \frac{g_S - 1}{2l + 1}. </math> Taking <math>V_\text{M}</math> to be the perturbation, the Zeeman correction to the energy is <math display="block"> E_\text{Z}^{(1)} = \langle nljm_j | H_\text{Z}^' | nljm_j \rangle = \langle V_\text{M} \rangle_\Psi = \mu_\text{B} g_J B_\text{ext} m_j. </math> ===Example: Lyman-alpha transition in hydrogen=== The [[Lyman alpha|Lyman-alpha transition]] in [[hydrogen]] in the presence of the [[spin–orbit interaction]] involves the transitions <math>2\,^2\!P_{1/2} \to 1\,^2\!S_{1/2}</math> and <math>2\,^2\!P_{3/2} \to 1\,^2\!S_{1/2}.</math> In the presence of an external magnetic field, the weak-field Zeeman effect splits the <math>1\,^2\!S_{1/2}</math> and <math>2\,^2\!P_{1/2}</math> levels into 2 states each (<math>m_j = +1/2, -1/2</math>) and the <math>2\,^2\!P_{3/2}</math> level into 4 states (<math>m_j = +3/2, +1/2, -1/2, -3/2</math>). The Landé g-factors for the three levels are <math display="block">\begin{align} g_J &= 2 & &\text{for}\ 1\,^2\!S_{1/2}\ (j = 1/2, l = 0), \\ g_J &= 2/3 & &\text{for}\ 2\,^2\!P_{1/2}\ (j = 1/2, l = 1), \\ g_J &= 4/3 & &\text{for}\ 2\,^2\!P_{3/2}\ (j = 3/2, l = 1). \end{align}</math> [[Image:Zeeman p s doublet.svg|right|300px]] Note in particular that the size of the energy splitting is different for the different orbitals because the ''g<sub>J</sub>'' values are different. Fine-structure splitting occurs even in the absence of a magnetic field, as it is due to spin–orbit coupling. Depicted on the right is the additional Zeeman splitting, which occurs in the presence of magnetic fields. {| class="wikitable" style="text-align:center" |+ Dipole-allowed Lyman-alpha transitions in the weak-field regime ! Initial state<br/> <math>(n = 2, l = 1)</math><br/> <math>|j, m_j\rangle</math> ! Final state<br/> <math>(n = 1, l = 0)</math><br/> <math>|j, m_j\rangle</math> ! Energy<br/> perturbation |- | <math>\left| \frac{1}{2}, \pm\frac{1}{2} \right\rangle</math> | <math>\left| \frac{1}{2}, \pm\frac{1}{2} \right\rangle</math> | <math>\mp\frac{2}{3} \mu_\text{B} B</math> |- | <math>\left| \frac{1}{2}, \pm\frac{1}{2} \right\rangle</math> | <math>\left| \frac{1}{2}, \mp\frac{1}{2} \right\rangle</math> | <math>\pm\frac{4}{3} \mu_\text{B} B</math> |- | <math>\left| \frac{3}{2}, \pm\frac{3}{2} \right\rangle</math> | <math>\left| \frac{1}{2}, \pm\frac{1}{2} \right\rangle</math> | <math>\pm \mu_{\rm B}B </math> |- | <math>\left| \frac{3}{2}, \pm\frac{1}{2} \right\rangle</math> | <math>\left| \frac{1}{2}, \pm\frac{1}{2} \right\rangle</math> | <math>\mp\frac{1}{3} \mu_\text{B} B</math> |- | <math>\left| \frac{3}{2}, \pm\frac{1}{2} \right\rangle</math> | <math>\left| \frac{1}{2}, \mp\frac{1}{2} \right\rangle</math> | <math>\pm\frac{5}{3} \mu_\text{B} B</math> |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Zeeman effect
(section)
Add topic