Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Virial theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Connection with the potential energy between particles === The total force {{math|'''F'''<sub>''k''</sub>}} on particle {{mvar|k}} is the sum of all the forces from the other particles {{mvar|j}} in the system: <math display="block"> \mathbf{F}_k = \sum_{j=1}^N \mathbf{F}_{jk}, </math> where {{math|'''F'''<sub>''jk''</sub>}} is the force applied by particle {{mvar|j}} on particle {{mvar|k}}. Hence, the virial can be written as <math display="block"> -\frac12\,\sum_{k=1}^N \mathbf{F}_k \cdot \mathbf{r}_k = -\frac12\,\sum_{k=1}^N \sum_{j=1}^N \mathbf{F}_{jk} \cdot \mathbf{r}_k. </math> Since no particle acts on itself (i.e., {{math|1='''F'''<sub>''jj''</sub> = 0}} for {{math|1 β€ ''j'' β€ ''N''}}), we split the sum in terms below and above this diagonal and add them together in pairs: <math display="block">\begin{align} \sum_{k=1}^N \mathbf{F}_k \cdot \mathbf{r}_k &= \sum_{k=1}^N \sum_{j=1}^N \mathbf{F}_{jk} \cdot \mathbf{r}_k = \sum_{k=2}^N \sum_{j=1}^{k-1} \mathbf{F}_{jk} \cdot \mathbf{r}_k + \sum_{k=1}^{N-1} \sum_{j=k+1}^{N} \mathbf{F}_{jk} \cdot \mathbf{r}_k \\ &= \sum_{k=2}^N \sum_{j=1}^{k-1} \mathbf{F}_{jk} \cdot \mathbf{r}_k + \sum_{j=2}^N \sum_{k=1}^{j-1} \mathbf{F}_{jk} \cdot \mathbf{r}_k = \sum_{k=2}^N \sum_{j=1}^{k-1} (\mathbf{F}_{jk} \cdot \mathbf{r}_k + \mathbf{F}_{kj} \cdot \mathbf{r}_j) \\ &= \sum_{k=2}^N \sum_{j=1}^{k-1} (\mathbf{F}_{jk} \cdot \mathbf{r}_k - \mathbf{F}_{jk} \cdot \mathbf{r}_j) = \sum_{k=2}^N \sum_{j=1}^{k-1} \mathbf{F}_{jk} \cdot (\mathbf{r}_k - \mathbf{r}_j), \end{align}</math> where we have used [[Newton's laws of motion|Newton's third law of motion]], i.e., {{math|1='''F'''<sub>''jk''</sub> = β'''F'''<sub>''kj''</sub>}} (equal and opposite reaction). It often happens that the forces can be derived from a potential energy {{mvar|''V''<sub>''jk''</sub>}} that is a function only of the distance {{math|''r''<sub>''jk''</sub>}} between the point particles {{mvar|j}} and {{mvar|k}}. Since the force is the negative gradient of the potential energy, we have in this case <math display="block"> \mathbf{F}_{jk} = -\nabla_{\mathbf{r}_k} V_{jk} = -\frac{dV_{jk}}{dr_{jk}} \left(\frac{\mathbf{r}_k - \mathbf{r}_j}{r_{jk}}\right), </math> which is equal and opposite to {{math|1='''F'''<sub>''kj''</sub> = ββ<sub>'''r'''<sub>''j''</sub></sub>''V''<sub>''kj''</sub> = ββ<sub>'''r'''<sub>''j''</sub></sub>''V''<sub>''jk''</sub>}}, the force applied by particle {{mvar|k}} on particle {{mvar|j}}, as may be confirmed by explicit calculation. Hence, <math display="block">\begin{align} \sum_{k=1}^N \mathbf{F}_k \cdot \mathbf{r}_k &= \sum_{k=2}^N \sum_{j=1}^{k-1} \mathbf{F}_{jk} \cdot (\mathbf{r}_k - \mathbf{r}_j) \\ &= -\sum_{k=2}^N \sum_{j=1}^{k-1} \frac{dV_{jk}}{dr_{jk}} \frac{|\mathbf{r}_k - \mathbf{r}_j|^2}{r_{jk}} \\ & =-\sum_{k=2}^N \sum_{j=1}^{k-1} \frac{dV_{jk}}{dr_{jk}} r_{jk}. \end{align}</math> Thus <math display="block"> \frac{dG}{dt} = 2 T + \sum_{k=1}^N \mathbf{F}_k \cdot \mathbf{r}_k = 2 T - \sum_{k=2}^N \sum_{j=1}^{k-1} \frac{dV_{jk}}{dr_{jk}} r_{jk}. </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Virial theorem
(section)
Add topic