Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Universal property
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== Below are a few examples, to highlight the general idea. The reader can construct numerous other examples by consulting the articles mentioned in the introduction. ===Tensor algebras=== Let <math>\mathcal{C}</math> be the [[category of vector spaces]] '''<math>K</math>-Vect''' over a [[field (mathematics)|field]] <math>K</math> and let <math>\mathcal{D}</math> be the category of [[algebra over a field|algebras]] '''<math>K</math>-Alg''' over <math>K</math> (assumed to be [[unital algebra|unital]] and [[associative algebra|associative]]). Let :<math>U</math> : '''<math>K</math>-Alg''' → '''<math>K</math>-Vect''' be the [[forgetful functor]] which assigns to each algebra its underlying vector space. Given any [[vector space]] <math>V</math> over <math>K</math> we can construct the [[tensor algebra]] <math>T(V)</math>. The tensor algebra is characterized by the fact: :βAny linear map from <math>V</math> to an algebra <math>A</math> can be uniquely extended to an [[algebra homomorphism]] from <math>T(V)</math> to <math>A</math>.β This statement is an initial property of the tensor algebra since it expresses the fact that the pair <math>(T(V),i)</math>, where <math>i:V \to U(T(V))</math> is the inclusion map, is a universal morphism from the vector space <math>V</math> to the functor <math>U</math>. Since this construction works for any vector space <math>V</math>, we conclude that <math>T</math> is a functor from '''<math>K</math>-Vect''' to '''<math>K</math>-Alg'''. This means that <math>T</math> is ''left adjoint'' to the forgetful functor <math>U</math> (see the section below on [[#Relation to adjoint functors|relation to adjoint functors]]). ===Products=== A [[categorical product]] can be characterized by a universal construction. For concreteness, one may consider the [[Cartesian product]] in '''[[Set (category theory)|Set]]''', the [[direct product]] in '''[[Grp (category theory)|Grp]]''', or the [[product topology]] in '''[[Top (category theory)|Top]]''', where products exist. Let <math>X</math> and <math>Y</math> be objects of a category <math>\mathcal{C}</math> with finite products. The product of <math>X</math> and <math>Y</math> is an object <math>X</math> × <math>Y</math> together with two morphisms :<math>\pi_1</math> : <math>X \times Y \to X</math> :<math>\pi_2</math> : <math>X \times Y \to Y</math> such that for any other object <math>Z</math> of <math>\mathcal{C}</math> and morphisms <math>f: Z \to X</math> and <math>g: Z \to Y</math> there exists a unique morphism <math>h: Z \to X \times Y</math> such that <math>f = \pi_1 \circ h</math> and <math>g = \pi_2 \circ h</math>. To understand this characterization as a universal property, take the category <math>\mathcal{D}</math> to be the [[product category]] <math>\mathcal{C} \times \mathcal{C}</math> and define the [[diagonal functor]] : <math>\Delta: \mathcal{C} \to \mathcal{C} \times \mathcal{C}</math> by <math>\Delta(X) = (X, X)</math> and <math>\Delta(f: X \to Y) = (f, f)</math>. Then <math>(X \times Y, (\pi_1, \pi_2))</math> is a universal morphism from <math>\Delta</math> to the object <math>(X, Y)</math> of <math>\mathcal{C} \times \mathcal{C}</math>: if <math>(f, g)</math> is any morphism from <math>(Z, Z)</math> to <math>(X, Y)</math>, then it must equal a morphism <math>\Delta(h: Z \to X \times Y) = (h,h)</math> from <math>\Delta(Z) = (Z, Z)</math> to <math>\Delta(X \times Y) = (X \times Y, X \times Y)</math> followed by <math>(\pi_1, \pi_2)</math>. As a commutative diagram: [[File:Universal-property-products.svg|center|484x484px|Commutative diagram showing how products have a universal property.]]For the example of the Cartesian product in '''Set''', the morphism <math>(\pi_1, \pi_2)</math> comprises the two projections <math>\pi_1(x,y) = x</math> and <math>\pi_2(x,y) = y</math>. Given any set <math>Z</math> and functions <math>f,g</math> the unique map such that the required diagram commutes is given by <math>h = \langle x,y\rangle(z) = (f(z), g(z))</math>.<ref>{{Cite arXiv |last1=Fong |first1=Brendan |last2=Spivak |first2=David I. |date=2018-10-12 |title=Seven Sketches in Compositionality: An Invitation to Applied Category Theory |class=math.CT |eprint=1803.05316 }}</ref> ===Limits and colimits=== Categorical products are a particular kind of [[limit (category theory)|limit]] in category theory. One can generalize the above example to arbitrary limits and colimits. Let <math>\mathcal{J}</math> and <math>\mathcal{C}</math> be categories with <math>\mathcal{J}</math> a [[small category|small]] [[index category]] and let <math>\mathcal{C}^\mathcal{J}</math> be the corresponding [[functor category]]. The ''[[diagonal functor]]'' :<math>\Delta: \mathcal{C} \to \mathcal{C}^\mathcal{J}</math> is the functor that maps each object <math>N</math> in <math>\mathcal{C}</math> to the constant functor <math>\Delta(N): \mathcal{J} \to \mathcal{C}</math> (i.e. <math>\Delta(N)(X) = N</math> for each <math>X</math> in <math>\mathcal{J}</math> and <math>\Delta(N)(f) = 1_N</math> for each <math>f: X \to Y</math> in <math>\mathcal{J}</math>) and each morphism <math>f : N \to M</math> in <math>\mathcal{C}</math> to the natural transformation <math>\Delta(f):\Delta(N)\to\Delta(M)</math> in <math>\mathcal{C}^{\mathcal{J}}</math> defined as, for every object <math>X</math> of <math>\mathcal{J}</math>, the component <math display="block">\Delta(f)(X):\Delta(N)(X)\to\Delta(M)(X) = f:N\to M</math> at <math>X</math>. In other words, the natural transformation is the one defined by having constant component <math>f:N\to M</math> for every object of <math>\mathcal{J}</math>. Given a functor <math>F: \mathcal{J} \to \mathcal{C}</math> (thought of as an object in <math>\mathcal{C}^\mathcal{J}</math>), the ''limit'' of <math>F</math>, if it exists, is nothing but a universal morphism from <math>\Delta</math> to <math>F</math>. Dually, the ''colimit'' of <math>F</math> is a universal morphism from <math>F</math> to <math>\Delta</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Universal property
(section)
Add topic