Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Uncertainty principle
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Proof of the Kennard inequality using wave mechanics=== We are interested in the [[variance]]s of position and momentum, defined as <math display="block">\sigma_x^2 = \int_{-\infty}^\infty x^2 \cdot |\psi(x)|^2 \, dx - \left( \int_{-\infty}^\infty x \cdot |\psi(x)|^2 \, dx \right)^2</math> <math display="block">\sigma_p^2 = \int_{-\infty}^\infty p^2 \cdot |\varphi(p)|^2 \, dp - \left( \int_{-\infty}^\infty p \cdot |\varphi(p)|^2 \, dp \right)^2~.</math> [[Without loss of generality]], we will assume that the [[expected value|means]] vanish, which just amounts to a shift of the origin of our coordinates. (A more general proof that does not make this assumption is given below.) This gives us the simpler form <math display="block">\sigma_x^2 = \int_{-\infty}^\infty x^2 \cdot |\psi(x)|^2 \, dx</math> <math display="block">\sigma_p^2 = \int_{-\infty}^\infty p^2 \cdot |\varphi(p)|^2 \, dp~.</math> The function <math>f(x) = x \cdot \psi(x)</math> can be interpreted as a [[vector space|vector]] in a [[function space]]. We can define an [[inner product]] for a pair of functions ''u''(''x'') and ''v''(''x'') in this vector space: <math display="block">\langle u \mid v \rangle = \int_{-\infty}^\infty u^*(x) \cdot v(x) \, dx,</math> where the asterisk denotes the [[complex conjugate]]. With this inner product defined, we note that the variance for position can be written as <math display="block">\sigma_x^2 = \int_{-\infty}^\infty |f(x)|^2 \, dx = \langle f \mid f \rangle ~.</math> We can repeat this for momentum by interpreting the function <math>\tilde{g}(p)=p \cdot \varphi(p)</math> as a vector, but we can also take advantage of the fact that <math>\psi(x)</math> and <math>\varphi(p)</math> are Fourier transforms of each other. We evaluate the inverse Fourier transform through [[integration by parts]]: <math display="block">\begin{align} g(x) &= \frac{1}{\sqrt{2 \pi \hbar}} \cdot \int_{-\infty}^\infty \tilde{g}(p) \cdot e^{ipx/\hbar} \, dp \\ &= \frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^\infty p \cdot \varphi(p) \cdot e^{ipx/\hbar} \, dp \\ &= \frac{1}{2 \pi \hbar} \int_{-\infty}^\infty \left[ p \cdot \int_{-\infty}^\infty \psi(\chi) e^{-ip\chi/\hbar} \, d\chi \right] \cdot e^{ipx/\hbar} \, dp \\ &= \frac{i}{2 \pi} \int_{-\infty}^\infty \left[ \cancel{ \left. \psi(\chi) e^{-ip\chi/\hbar} \right|_{-\infty}^\infty } - \int_{-\infty}^\infty \frac{d\psi(\chi)}{d\chi} e^{-ip\chi/\hbar} \, d\chi \right] \cdot e^{ipx/\hbar} \, dp \\ &= -i \int_{-\infty}^\infty \frac{d\psi(\chi)}{d\chi} \left[ \frac{1}{2 \pi}\int_{-\infty}^\infty \, e^{ip(x - \chi)/\hbar} \, dp \right]\, d\chi\\ &= -i \int_{-\infty}^\infty \frac{d\psi(\chi)}{d\chi} \left[ \delta\left(\frac{x - \chi }{\hbar}\right) \right]\, d\chi\\ &= -i \hbar \int_{-\infty}^\infty \frac{d\psi(\chi)}{d\chi} \left[ \delta\left(x - \chi \right) \right]\, d\chi\\ &= -i \hbar \frac{d\psi(x)}{dx} \\ &= \left( -i \hbar \frac{d}{dx} \right) \cdot \psi(x) , \end{align}</math> where <math>v=\frac{\hbar}{-ip}e^{-ip\chi/\hbar}</math> in the integration by parts, the cancelled term vanishes because the wave function vanishes at both infinities and <math>|e^{-ip\chi/\hbar}|=1</math>, and then use the [[Dirac delta function#History|Dirac delta function]] which is valid because <math>\dfrac{d\psi(\chi)}{d\chi}</math> does not depend on ''p'' . The term <math display="inline">-i \hbar \frac{d}{dx}</math> is called the [[momentum operator]] in position space. Applying [[Plancherel theorem|Plancherel's theorem]], we see that the variance for momentum can be written as <math display="block">\sigma_p^2 = \int_{-\infty}^\infty |\tilde{g}(p)|^2 \, dp = \int_{-\infty}^\infty |g(x)|^2 \, dx = \langle g \mid g \rangle.</math> The [[Cauchy–Schwarz inequality]] asserts that <math display="block">\sigma_x^2 \sigma_p^2 = \langle f \mid f \rangle \cdot \langle g \mid g \rangle \ge |\langle f \mid g \rangle|^2 ~.</math> The [[modulus squared]] of any complex number ''z'' can be expressed as <math display="block">|z|^{2} = \Big(\text{Re}(z)\Big)^{2}+\Big(\text{Im}(z)\Big)^{2} \geq \Big(\text{Im}(z)\Big)^{2} = \left(\frac{z-z^{\ast}}{2i}\right)^{2}. </math> we let <math>z=\langle f|g\rangle</math> and <math>z^{*}=\langle g\mid f\rangle</math> and substitute these into the equation above to get <math display="block">|\langle f\mid g\rangle|^2 \geq \left(\frac{\langle f\mid g\rangle-\langle g \mid f \rangle}{2i}\right)^2 ~.</math> All that remains is to evaluate these inner products. <math display="block">\begin{align} \langle f\mid g\rangle-\langle g\mid f\rangle &= \int_{-\infty}^\infty \psi^*(x) \, x \cdot \left(-i \hbar \frac{d}{dx}\right) \, \psi(x) \, dx - \int_{-\infty}^\infty \psi^*(x) \, \left(-i \hbar \frac{d}{dx}\right) \cdot x \, \psi(x) \, dx \\ &= i \hbar \cdot \int_{-\infty}^\infty \psi^*(x) \left[ \left(-x \cdot \frac{d\psi(x)}{dx}\right) + \frac{d(x \psi(x))}{dx} \right] \, dx \\ &= i \hbar \cdot \int_{-\infty}^\infty \psi^*(x) \left[ \left(-x \cdot \frac{d\psi(x)}{dx}\right) + \psi(x) + \left(x \cdot \frac{d\psi(x)}{dx}\right)\right] \, dx \\ &= i \hbar \cdot \int_{-\infty}^\infty \psi^*(x) \psi(x) \, dx \\ &= i \hbar \cdot \int_{-\infty}^\infty |\psi(x)|^2 \, dx \\ &= i \hbar \end{align}</math> Plugging this into the above inequalities, we get <math display="block">\sigma_x^2 \sigma_p^2 \ge |\langle f \mid g \rangle|^2 \ge \left(\frac{\langle f\mid g\rangle-\langle g\mid f\rangle}{2i}\right)^2 = \left(\frac{i \hbar}{2 i}\right)^2 = \frac{\hbar^2}{4}</math> and taking the square root <math display="block">\sigma_x \sigma_p \ge \frac{\hbar}{2}~.</math> with equality if and only if ''p'' and ''x'' are linearly dependent. Note that the only ''physics'' involved in this proof was that <math>\psi(x)</math> and <math>\varphi(p)</math> are wave functions for position and momentum, which are Fourier transforms of each other. A similar result would hold for ''any'' pair of conjugate variables.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Uncertainty principle
(section)
Add topic