Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Telomere
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Telomere ends and shelterin === [[File:Telosome.png|thumb|300x300px|Shelterin co-ordinates the T-loop formation of telomeres.]] {{Main|Shelterin}} At the very 3'-end of the telomere there is a 300 base pair overhang which can invade the double-stranded portion of the telomere forming a structure known as a T-loop. This loop is analogous to a knot, which stabilizes the telomere, and prevents the telomere ends from being recognized as breakpoints by the DNA repair machinery. Should non-homologous end joining occur at the telomeric ends, chromosomal fusion would result. The T-loop is maintained by several proteins, collectively referred to as the shelterin complex. In humans, the shelterin complex consists of six proteins identified as [[TERF1|TRF1]], [[TERF2|TRF2]], [[TINF2|TIN2]], [[POT1]], [[ACD (gene)|TPP1]], and [[TERF2IP|RAP1]].<ref name="pmid20569239">{{cite journal | vauthors = Martínez P, Blasco MA | title = Role of shelterin in cancer and aging | journal = Aging Cell | volume = 9 | issue = 5 | pages = 653–66 | date = October 2010 | pmid = 20569239 | doi = 10.1111/j.1474-9726.2010.00596.x | doi-access = free }}</ref> In many species, the sequence repeats are enriched in [[guanine]], e.g. TTAGGG in [[vertebrate]]s,<ref name=pmid2780561>{{cite journal | vauthors = Meyne J, Ratliff RL, Moyzis RK | title = Conservation of the human telomere sequence (TTAGGG)n among vertebrates | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 86 | issue = 18 | pages = 7049–53 | date = September 1989 | pmid = 2780561 | pmc = 297991 | doi = 10.1073/pnas.86.18.7049 | bibcode = 1989PNAS...86.7049M | doi-access = free }}</ref> which allows the formation of [[G-quadruplex]]es, a special conformation of DNA involving non-Watson-Crick base pairing. There are different subtypes depending on the involvement of single- or double-stranded DNA, among other things. There is evidence for the 3'-overhang in [[ciliate]]s (that possess telomere repeats similar to those found in [[vertebrate]]s) to form such G-quadruplexes that accommodate it, rather than a T-loop. G-quadruplexes present an obstacle for enzymes such as DNA-polymerases and are thus thought to be involved in the regulation of replication and transcription.<ref>{{cite journal | vauthors = Lipps HJ, Rhodes D | title = G-quadruplex structures: in vivo evidence and function | journal = Trends in Cell Biology | volume = 19 | issue = 8 | pages = 414–22 | date = August 2009 | pmid = 19589679 | doi = 10.1016/j.tcb.2009.05.002 }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Telomere
(section)
Add topic