Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Surface (topology)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Construction from polygons== Each closed surface can be constructed from an oriented polygon with an even number of sides, called a [[fundamental polygon]] of the surface, by pairwise identification of its edges. For example, in each polygon below, attaching the sides with matching labels (''A'' with ''A'', ''B'' with ''B''), so that the arrows point in the same direction, yields the indicated surface. <gallery> Image:SphereAsSquare.svg|[[sphere]] Image:ProjectivePlaneAsSquare.svg|[[real projective plane]] Image:TorusAsSquare.svg|[[torus]] Image:KleinBottleAsSquare.svg|[[Klein bottle]] </gallery> Any fundamental polygon can be written symbolically as follows. Begin at any vertex, and proceed around the perimeter of the polygon in either direction until returning to the starting vertex. During this traversal, record the label on each edge in order, with an exponent of -1 if the edge points opposite to the direction of traversal. The four models above, when traversed clockwise starting at the upper left, yield * sphere: <math>A B B^{-1} A^{-1}</math> * real projective plane: <math>A B A B</math> * torus: <math>A B A^{-1} B^{-1}</math> * Klein bottle: <math>A B A B^{-1}</math>. Note that the sphere and the projective plane can both be realized as quotients of the 2-gon, while the torus and Klein bottle require a 4-gon (square). The expression thus derived from a fundamental polygon of a surface turns out to be the sole relation in a [[presentation of a group|presentation]] of the [[fundamental group]] of the surface with the polygon edge labels as generators. This is a consequence of the [[Seifert–van Kampen theorem]]. Gluing edges of polygons is a special kind of [[Quotient space (topology)|quotient space]] process. The quotient concept can be applied in greater generality to produce new or alternative constructions of surfaces. For example, the real projective plane can be obtained as the quotient of the sphere by identifying all pairs of opposite points on the sphere. Another example of a quotient is the connected sum.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Surface (topology)
(section)
Add topic