Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Semidirect product
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Outer semidirect product=== Let us now consider the outer semidirect product. Given any two groups {{math|''N''}} and {{math|''H''}} and a group homomorphism {{math|''Ο'' : ''H'' β Aut(''N'')}}, we can construct a new group {{math|''N'' β{{sub|''Ο''}} ''H''}}, called the '''outer semidirect product''' of {{math|''N''}} and {{math|''H''}} with respect to {{math|''Ο''}}, defined as follows:<ref>{{cite book |last1=Robinson |first1=Derek John Scott |title=An Introduction to Abstract Algebra |year=2003 |publisher=[[De Gruyter|Walter de Gruyter]] |isbn=9783110175448 |pages=75β76}}</ref> {{numbered list | The underlying set is the [[Cartesian product]] {{math|''N'' Γ ''H''}}. | The group operation <math>\bullet</math> is determined by the homomorphism {{math|''Ο''}}: : <math>\begin{align} \bullet : (N \rtimes_\varphi H) \times (N \rtimes_\varphi H) &\to N \rtimes_\varphi H\\ (n_1, h_1) \bullet (n_2, h_2) &= (n_1 \varphi_{h_1}(n_2),\, h_1 h_2) \end{align}</math> for {{math|''n''<sub>1</sub>, ''n''<sub>2</sub>}} in {{math|''N''}} and {{math|''h''<sub>1</sub>, ''h''<sub>2</sub>}} in {{math|''H''}}. }} This defines a group in which the identity element is {{math|(''e''<sub>''N''</sub>, ''e<sub>H</sub>'')}} and the inverse of the element {{math|(''n'', ''h'')}} is {{math|(''Ο''<sub>''h''<sup>β1</sup></sub>(''n''<sup>β1</sup>), ''h''<sup>β1</sup>)}}. Pairs {{math|(''n'', ''e<sub>H</sub>'')}} form a normal subgroup isomorphic to {{math|''N''}}, while pairs {{math|(''e<sub>N</sub>'', ''h'')}} form a subgroup isomorphic to {{math|''H''}}. The full group is a semidirect product of those two subgroups in the sense given earlier. Conversely, suppose that we are given a group {{math|''G''}} with a normal subgroup {{math|''N''}} and a subgroup {{math|''H''}}, such that every element {{math|''g''}} of {{math|''G''}} may be written uniquely in the form {{math|''g {{=}} nh''}} where {{math|''n''}} lies in {{math|''N''}} and {{math|''h''}} lies in {{math|''H''}}. Let {{math|''Ο'' : ''H'' β Aut(''N'')}} be the homomorphism (written {{math|''Ο''(''h'') {{=}} ''Ο''<sub>''h''</sub>}}) given by : <math>\varphi_h(n) = hnh^{-1}</math> for all {{math|''n'' β ''N'', ''h'' β ''H''}}. Then {{math|''G''}} is isomorphic to the semidirect product {{math|''N'' β{{sub|''Ο''}} ''H''}}. The isomorphism {{math|''Ξ»'' : ''G'' β ''N'' β{{sub|''Ο''}} ''H''}} is well defined by {{math|''Ξ»''(''a'') {{=}} ''Ξ»''(''nh'') {{=}} (''n, h'')}} due to the uniqueness of the decomposition {{math|''a'' {{=}} ''nh''}}. In {{math|''G''}}, we have : <math>(n_1 h_1)(n_2 h_2) = n_1 h_1 n_2(h_1^{-1}h_1) h_2 = (n_1 \varphi_{h_1}(n_2))(h_1 h_2)</math> Thus, for {{math|''a'' {{=}} ''n''{{sub|1}}''h''{{sub|1}}}} and {{math|''b'' {{=}} ''n''{{sub|2}}''h''{{sub|2}}}} we obtain : <math>\begin{align} \lambda(ab) & = \lambda(n_1 h_1 n_2 h_2) = \lambda(n_1 \varphi_{h_1} (n_2) h_1 h_2) = (n_1 \varphi_{h_1} (n_2), h_1 h_2) = (n_1, h_1) \bullet (n_2, h_2) \\[5pt] & = \lambda(n_1 h_1) \bullet \lambda(n_2 h_2) = \lambda(a) \bullet \lambda(b), \end{align}</math> which [[mathematical proof|proves]] that {{math|''Ξ»''}} is a homomorphism. Since {{math|''Ξ»''}} is obviously an epimorphism and monomorphism, then it is indeed an isomorphism. This also explains the definition of the multiplication rule in {{math|''N'' β{{sub|''Ο''}} ''H''}}. The direct product is a special case of the semidirect product. To see this, let {{math|''Ο''}} be the trivial homomorphism (i.e., sending every element of {{math|''H''}} to the identity automorphism of {{math|''N''}}) then {{math|''N'' β{{sub|''Ο''}} ''H''}} is the direct product {{math|''N'' Γ ''H''}}. A version of the [[splitting lemma]] for groups states that a group {{math|''G''}} is isomorphic to a semidirect product of the two groups {{math|''N''}} and {{math|''H''}} [[if and only if]] there exists a [[Exact sequence#Short exact sequence|short exact sequence]] : <math> 1 \longrightarrow N \,\overset{\beta}{\longrightarrow}\, G \,\overset{\alpha}{\longrightarrow}\, H \longrightarrow 1</math> and a group homomorphism {{math|''Ξ³'' : ''H'' β ''G''}} such that {{math|''Ξ±'' β ''Ξ³'' {{=}} id<sub>''H''</sub>}}, the identity map on {{math|''H''}}. In this case, {{math|''Ο'' : ''H'' β Aut(''N'')}} is given by {{math|''Ο''(''h'') {{=}} ''Ο''<sub>''h''</sub>}}, where :<math>\varphi_h(n) = \beta^{-1}(\gamma(h)\beta(n)\gamma(h^{-1})).</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Semidirect product
(section)
Add topic