Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Rayleigh number
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Solidifying alloys=== The Rayleigh number can also be used as a criterion to predict convectional instabilities, such as [[A-segregates]], in the mushy zone of a solidifying alloy. The mushy zone Rayleigh number is defined as: <math display="block">\mathrm{Ra} = \frac{\frac{\Delta \rho}{\rho_0}g \bar{K} L}{\alpha \nu} = \frac{\frac{\Delta \rho}{\rho_0}g \bar{K} }{R \nu}</math> where: *''<span style="text-decoration: overline">K</span>'' is the mean permeability (of the initial portion of the mush) *''L'' is the characteristic length scale *''α'' is the thermal diffusivity *''ν'' is the kinematic viscosity *''R'' is the solidification or isotherm speed.<ref name="ReferenceA">{{cite journal |last1=Torabi Rad |first1=M. |last2=Kotas |first2=P. |last3=Beckermann |first3=C. |author3-link=Christoph Beckermann |title=Rayleigh number criterion for formation of A-Segregates in steel castings and ingots |journal=Metall. Mater. Trans. A |date=2013 |volume=44A |issue=9 |pages=4266–4281|doi=10.1007/s11661-013-1761-4 |bibcode=2013MMTA...44.4266R |s2cid=137652216 }}</ref> A-segregates are predicted to form when the Rayleigh number exceeds a certain critical value. This critical value is independent of the composition of the alloy, and this is the main advantage of the Rayleigh number criterion over other criteria for prediction of convectional instabilities, such as Suzuki criterion. Torabi Rad et al. showed that for steel alloys the critical Rayleigh number is 17.<ref name="ReferenceA"/> Pickering et al. explored Torabi Rad's criterion, and further verified its effectiveness. Critical Rayleigh numbers for lead–tin and nickel-based super-alloys were also developed.<ref>{{cite journal |last1=Pickering |first1=E.J. |last2=Al-Bermani |first2=S. |last3=Talamantes-Silva |first3=J. |title=Application of criterion for A-segregation in steel ingots |journal=Materials Science and Technology |date=2014|volume=31 |issue=11 |page=1313 |doi=10.1179/1743284714Y.0000000692 |bibcode=2015MatST..31.1313P |s2cid=137549220 }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Rayleigh number
(section)
Add topic