Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Quantum harmonic oscillator
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Analytical questions==== The preceding analysis is algebraic, using only the commutation relations between the raising and lowering operators. Once the algebraic analysis is complete, one should turn to analytical questions. First, one should find the ground state, that is, the solution of the equation <math>a\psi_0 = 0</math>. In the position representation, this is the first-order differential equation <math display="block">\left(x+\frac{\hbar}{m\omega}\frac{d}{dx}\right)\psi_0 = 0,</math> whose solution is easily found to be the [[Gaussian_function|Gaussian]]<ref group="nb">The normalization constant is <math>C = \left(\frac{m\omega}{\pi \hbar}\right)^{{1}/{4}}</math>, and satisfies the normalization condition <math>\int_{-\infty}^{\infty}\psi_0(x)^{*}\psi_0(x)dx = 1</math>.</ref> <math display="block">\psi_0(x)=Ce^{-\frac{m\omega x^2}{2\hbar}}.</math> Conceptually, it is important that there is only one solution of this equation; if there were, say, two linearly independent ground states, we would get two independent chains of eigenvectors for the harmonic oscillator. Once the ground state is computed, one can show inductively that the excited states are Hermite polynomials times the Gaussian ground state, using the explicit form of the raising operator in the position representation. One can also prove that, as expected from the uniqueness of the ground state, the Hermite functions energy eigenstates <math>\psi_n</math> constructed by the ladder method form a ''complete'' orthonormal set of functions.<ref>{{citation|first=Brian C.|last=Hall | title=Quantum Theory for Mathematicians|series=Graduate Texts in Mathematics|volume=267|isbn=978-1461471158 |publisher=Springer|year=2013 |bibcode=2013qtm..book.....H | at = Theorem 11.4}}</ref> Explicitly connecting with the previous section, the ground state |0β© in the position representation is determined by <math> a| 0\rangle =0</math>, <math display="block"> \left\langle x \mid a \mid 0 \right\rangle = 0 \qquad \Rightarrow \left(x + \frac{\hbar}{m\omega}\frac{d}{dx}\right)\left\langle x\mid 0\right\rangle = 0 \qquad \Rightarrow </math> <math display="block"> \left\langle x\mid 0\right\rangle = \left(\frac{m\omega}{\pi\hbar}\right)^\frac{1}{4} \exp\left( -\frac{m\omega}{2\hbar}x^2 \right) = \psi_0 ~,</math> hence <math display="block"> \langle x \mid a^\dagger \mid 0 \rangle = \psi_1 (x) ~,</math> so that <math>\psi_1(x,t)=\langle x \mid e^{-3i\omega t/2} a^\dagger \mid 0 \rangle </math>, and so on.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Quantum harmonic oscillator
(section)
Add topic