Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Poker probability
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===7-card poker hands=== In some popular variations of poker such as [[Texas hold 'em]], the most widespread poker variant overall,<ref>{{cite web | url=https://www.casinodaniabeach.com/most-popular-types-of-poker/ | title=How to Play the Most Popular Types of Poker | date=14 August 2019 }}</ref> a player uses the best five-card poker hand out of seven cards. The frequencies are calculated in a manner similar to that shown for 5-card hands,<ref>{{cite web | url=https://www.pokerstrategy.com/strategy/various-poker/texas-holdem-probabilities/ | title=Probabilities in Texas Hold'em }}</ref> except additional complications arise due to the extra two cards in the 7-card poker hand. The total number of distinct 7-card hands is <math display="inline">{52 \choose 7} = 133{,}784{,}560</math>. It is notable that the probability of a no-pair hand is ''lower'' than the probability of a one-pair or two-pair hand. The Ace-high straight flush or royal flush is slightly more frequent (4324) than the lower straight flushes (4140 each) because the remaining two [[Playing card|cards]] can have any value; a King-high straight flush, for example, cannot have the Ace of its suit in the hand (as that would make it ace-high instead). :{| class="wikitable" style="font-size: 95%; text-align:center;" |- !Hand !! Frequency !! Probability !! Cumulative !! Odds against !Mathematical expression of absolute frequency |- |[[Hand rankings#Straight flush|Royal flush]]<br /> {{card|spade|10|40px}} {{card|spade|J|40px}} {{card|spade|Q|40px}} {{card|spade|K|40px}} {{card|spade|A|40px}} |align=center| 4,324 || 0.0032% || 0.0032% ||align=center| 30,939 : 1 |<math>{4 \choose 1}{47 \choose 2}</math> |- |[[Hand rankings#Straight flush|Straight flush]] (excluding royal flush)<br /> {{card|heart|4|40px}} {{card|heart|5|40px}} {{card|heart|6|40px}} {{card|heart|7|40px}} {{card|heart|8|40px}} |align=center| 37,260 || 0.0279% || 0.0311% ||align=center| 3,589.6 : 1 |<math>{9 \choose 1}{4 \choose 1}{46 \choose 2}</math> |- |[[Hand rankings#Four of a kind|Four of a kind]]<br /> {{card|heart|A|40px}} {{card|diamond|A|40px}} {{card|club|A|40px}} {{card|spade|A|40px}} {{card|diamond|4|40px}} |align=center| 224,848 || 0.168% || 0.199% ||align=center| 594 : 1 |<math>{13 \choose 1}{48 \choose 3}</math> |- |[[Hand rankings#Full house|Full house]]<br /> {{card|heart|8|40px}} {{card|diamond|8|40px}} {{card|club|8|40px}} {{card|heart|K|40px}} {{card|spade|K|40px}} |align=center| 3,473,184 || 2.60% || 2.80% ||align=center| 37.5 : 1 |<math>\begin{align} & \left[ {13 \choose 2}{4 \choose 3}^2{44 \choose 1} \right] \\ + & \left[{13 \choose 1}{12 \choose 2}{4 \choose 3}{4 \choose 2}^2 \right] \\ + & \left[{13 \choose 1}{12 \choose 1}{11 \choose 2}{4 \choose 3}{4 \choose 2}{4 \choose 1}^2\right] \end{align}</math> |- |[[Hand rankings#Flush|Flush]] (excluding royal flush and straight flush)<br /> {{card|club|10|40px}} {{card|club|4|40px}} {{card|club|Q|40px}} {{card|club|7|40px}} {{card|club|2|40px}} |align=center| 4,047,644 || 3.03% || 5.82% ||align=center| 32.1 : 1 |<math>\begin{align} & \left[ {4 \choose 1} \times \left[ {13 \choose 7} - 217\right] \right] \\ + & \left[ {4 \choose 1} \times \left[ {13 \choose 6} - 71\right] \times 39\right] \\ + & \left[ {4 \choose 1} \times \left[ {13 \choose 5} - 10\right] \times {39 \choose 2}\right] \end{align}</math> |- |[[Hand rankings#Straight|Straight]] (excluding royal flush, straight flush, and overlapping flushes)<br /> {{card|club|7|40px}} {{card|heart|8|40px}} {{card|diamond|9|40px}} {{card|heart|10|40px}} {{card|spade|J|40px}} |align=center| 6,180,020 || 4.62% || 10.4% ||align=center| 20.6 : 1 |<math>\begin{align} & \left[ 217 \times \left[4^7 - 756 - 4 - 84\right] \right] \\ + &{} \left[ 71 \times 36 \times 990 \right] \\ + & \left[ 10 \times 5 \times 4 \times \left[256 - 3\right] + 10 \times {5 \choose 2} \times 2268 \right] \end{align}</math> |- |[[Hand rankings#Three of a kind|Three of a kind]]<br /> {{card|heart|Q|40px}} {{card|club|Q|40px}} {{card|diamond|Q|40px}} {{card|spade|5|40px}} {{card|diamond|A|40px}} |align=center| 6,461,620 || 4.83% || 15.3% ||align=center| 19.7 : 1 |<math>\left[{13 \choose 5} - 10\right]{5 \choose 1}{4 \choose 1}\left[{4 \choose 1}^4 - 3\right]</math> |- |[[Hand rankings#Two pair|Two pair]]<br /> {{card|heart|3|40px}} {{card|diamond|3|40px}} {{card|club|6|40px}} {{card|heart|6|40px}} {{card|spade|K|40px}} |align=center| 31,433,400 || 23.5% || 38.8% ||align=center| 3.26 : 1 |<math>\begin{align} & \left[ 1277 \times 10 \times \left[6 \times 62 + 24 \times 63 + 6 \times 64\right] \right] \\ + & \left[ {13 \choose 3} {4 \choose 2} ^ 3 {40 \choose 1}\right] \end{align}</math> |- |[[Hand rankings#One pair|One pair]]<br /> {{card|heart|5|40px}} {{card|spade|5|40px}} {{card|club|2|40px}} {{card|club|J|40px}} {{card|diamond|A|40px}} |align=center| 58,627,800 || 43.8% || 82.6% ||align=center| 1.28 : 1 |<math>\left[{13 \choose 6} - 71\right] \times 6 \times 6 \times 990</math> |- |[[Hand rankings#High card|No pair]] / High card<br /> {{card|diamond|2|40px}} {{card|spade|5|40px}} {{card|spade|6|40px}} {{card|heart|J|40px}} {{card|club|A|40px}} |align=center| 23,294,460 || 17.4% || 100% ||align=center| 4.74 : 1 |<math>1499 \times \left[4^7 - 756 - 4 - 84\right]</math> |- ! Total ! align="center" | 133,784,560 !! 100% !! --- !! align="center" | 0 : 1 !<math>{52 \choose 7}</math> |} (The frequencies given are exact; the probabilities and odds are approximate.) Since suits have no relative value in poker, two hands can be considered identical if one hand can be transformed into the other by swapping suits. Eliminating identical hands that ignore relative suit values leaves 6,009,159 distinct 7-card hands. The number of distinct 5-card poker hands that are possible from 7 cards is 4,824. Perhaps surprisingly, this is fewer than the number of 5-card poker hands from 5 cards, as some 5-card hands are impossible with 7 cards (e.g. 7-high and 8-high).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Poker probability
(section)
Add topic