Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Peer-to-peer
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Unstructured networks==== [[File:Unstructured peer-to-peer network diagram.png|thumb|right|300px|Overlay network diagram for an '''unstructured P2P network''', illustrating the ad hoc nature of the connections between nodes]] ''Unstructured peer-to-peer networks'' do not impose a particular structure on the overlay network by design, but rather are formed by nodes that randomly form connections to each other.<ref>{{cite book |last=Filali |first=Imen |chapter=A Survey of Structured P2P Systems for RDF Data Storage and Retrieval |editor-last=Hameurlain |editor-first=Abdelkader |title=Transactions on Large-Scale Data- and Knowledge-Centered Systems III: Special Issue on Data and Knowledge Management in Grid and PSP Systems |publisher=Springer |year=2011 |isbn=9783642230738|page=21 |chapter-url=https://books.google.com/books?id=pjQr7BHtbCoC&pg=PA21 |display-authors=etal|display-editors=etal}}</ref> ([[Gnutella]], [[Gossip protocol|Gossip]], and [[Kazaa]] are examples of unstructured P2P protocols).<ref name=":0">{{cite book |last=Zulhasnine |first=Mohammed |chapter=P2P Streaming Over Cellular Networks: Issues, Challenges, and Opportunities |editor=Pathan |title=Building Next-Generation Converged Networks: Theory and Practice |publisher=CRC Press |year=2013 |isbn=9781466507616 |page=99 |chapter-url=https://books.google.com/books?id=tr5PGJk-swIC&pg=PA99 |display-authors=etal|display-editors=etal}}</ref> Because there is no structure globally imposed upon them, unstructured networks are easy to build and allow for localized optimizations to different regions of the overlay.<ref>{{cite book |last1=Chervenak |first1=Ann |last2=Bharathi |first2=Shishir |chapter=Peer-to-peer Approaches to Grid Resource Discovery |editor-last=Danelutto |editor-first=Marco |title=Making Grids Work: Proceedings of the CoreGRID Workshop on Programming Models Grid and P2P System Architecture Grid Systems, Tools and Environments 12-13 June 2007, Heraklion, Crete, Greece|publisher=Springer |year=2008 |isbn=9780387784489 |page=67 |chapter-url=https://books.google.com/books?id=adN0pm_BBuYC&pg=PA67 |display-editors=etal}}</ref> Also, because the role of all peers in the network is the same, unstructured networks are highly robust in the face of high rates of "churn"βthat is, when large numbers of peers are frequently joining and leaving the network.<ref name="Jin-Unstructured-2010">{{cite book |last1=Jin |first1=Xing |last2=Chan |first2=S.-H. Gary |chapter=Unstructured Peer-to-Peer Network Architectures |editor=Shen |title=Handbook of Peer-to-Peer Networking |publisher=Springer |year=2010 |isbn=978-0-387-09750-3 |page=119 |display-editors=etal}}</ref><ref name="lv-2002">{{cite book |last=Lv |first=Qin |chapter=Can Heterogeneity Make Gnutella Stable? |editor-last=Druschel |editor-first=Peter |title=Peer-to-Peer Systems: First International Workshop, IPTPS 2002, Cambridge, MA, USA, March 7-8, 2002, Revised Papers |publisher=Springer |year=2002 |isbn=9783540441793 |page=[https://archive.org/details/peertopeersystem0000iptp/page/94 94] |chapter-url=https://books.google.com/books?id=f57AwpUIctcC&pg=PA94 |display-authors=etal |display-editors=etal |url=https://archive.org/details/peertopeersystem0000iptp/page/94 }}</ref> However, the primary limitations of unstructured networks also arise from this lack of structure. In particular, when a peer wants to find a desired piece of data in the network, the search query must be flooded through the network to find as many peers as possible that share the data. Flooding causes a very high amount of signaling traffic in the network, uses more [[CPU]]/memory (by requiring every peer to process all search queries), and does not ensure that search queries will always be resolved. Furthermore, since there is no correlation between a peer and the content managed by it, there is no guarantee that flooding will find a peer that has the desired data. Popular content is likely to be available at several peers and any peer searching for it is likely to find the same thing. But if a peer is looking for rare data shared by only a few other peers, then it is highly unlikely that the search will be successful.<ref>{{cite book |last1=Shen |first1=Xuemin |last2=Yu |first2=Heather |last3=Buford |first3=John |last4=Akon |first4=Mursalin |title=Handbook of Peer-to-Peer Networking |publisher=Springer|edition=1st |year=2009 |location=New York |page=118 |isbn=978-0-387-09750-3}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Peer-to-peer
(section)
Add topic