Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Pareto distribution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== ===Moments and characteristic function=== * The [[expected value]] of a [[random variable]] following a Pareto distribution is : :: <math>\operatorname{E}(X)= \begin{cases} \infty & \alpha\le 1, \\ \frac{\alpha x_{\mathrm{m}}}{\alpha-1} & \alpha>1. \end{cases}</math> * The [[variance]] of a [[random variable]] following a Pareto distribution is :: <math>\operatorname{Var}(X)= \begin{cases} \infty & \alpha\in(1,2], \\ \left(\frac{x_\mathrm{m}}{\alpha-1}\right)^2 \frac{\alpha}{\alpha-2} & \alpha>2. \end{cases}</math> : (If ''Ξ±'' β€ 2, the variance does not exist.) * The raw [[moment (mathematics)|moments]] are :: <math>\mu_n'= \begin{cases} \infty & \alpha\le n, \\ \frac{\alpha x_\mathrm{m}^n}{\alpha-n} & \alpha>n. \end{cases}</math> * The [[Moment-generating function|moment generating function]] is only defined for non-positive values ''t'' β€ 0 as ::<math>M\left(t;\alpha,x_\mathrm{m}\right) = \operatorname{E} \left [e^{tX} \right ] = \alpha(-x_\mathrm{m} t)^\alpha\Gamma(-\alpha,-x_\mathrm{m} t)</math> ::<math>M\left(0,\alpha,x_\mathrm{m}\right)=1.</math> Thus, since the expectation does not converge on an [[open interval]] containing <math>t=0</math> we say that the moment generating function does not exist. * The [[Characteristic function (probability theory)|characteristic function]] is given by :: <math>\varphi(t;\alpha,x_\mathrm{m})=\alpha(-ix_\mathrm{m} t)^\alpha\Gamma(-\alpha,-ix_\mathrm{m} t),</math> : where Ξ(''a'', ''x'') is the [[incomplete gamma function]]. The parameters may be solved for using the [[Method of moments (statistics)|method of moments]].<ref>S. Hussain, S.H. Bhatti (2018). [https://www.researchgate.net/publication/322758024_Parameter_estimation_of_Pareto_distribution_Some_modified_moment_estimators Parameter estimation of Pareto distribution: Some modified moment estimators]. ''Maejo International Journal of Science and Technology'' 12(1):11-27.</ref> ===Conditional distributions=== The [[conditional probability distribution]] of a Pareto-distributed random variable, given the event that it is greater than or equal to a particular number <math>x_1</math> exceeding <math>x_\text{m}</math>, is a Pareto distribution with the same Pareto index <math>\alpha</math> but with minimum <math>x_1</math> instead of <math>x_\text{m}</math>: :<math> \text{Pr}(X \geq x | X \geq x_1) = \begin{cases} \left(\frac{x_1}{x}\right)^\alpha & x \geq x_1, \\ 1 & x < x_1. \end{cases} </math> This implies that the conditional expected value (if it is finite, i.e. <math>\alpha>1</math>) is proportional to <math>x_1</math>: :<math>\text{E}(X | X \geq x_1) \propto x_1.</math> In case of random variables that describe the lifetime of an object, this means that life expectancy is proportional to age, and is called the [[Lindy effect]] or Lindy's Law.<ref name=":02">{{cite journal|last1=Eliazar|first1=Iddo|date=November 2017|title=Lindy's Law|journal=Physica A: Statistical Mechanics and Its Applications|volume=486|pages=797β805|bibcode=2017PhyA..486..797E|doi=10.1016/j.physa.2017.05.077|s2cid=125349686 }}</ref> ===A characterization theorem=== Suppose <math>X_1, X_2, X_3, \dotsc</math> are [[independent identically distributed]] [[random variable]]s whose probability distribution is supported on the interval <math>[x_\text{m},\infty)</math> for some <math>x_\text{m}>0</math>. Suppose that for all <math>n</math>, the two random variables <math>\min\{X_1,\dotsc,X_n\}</math> and <math>(X_1+\dotsb+X_n)/\min\{X_1,\dotsc,X_n\}</math> are independent. Then the common distribution is a Pareto distribution.{{Citation needed|date=February 2012}} ===Geometric mean=== The [[geometric mean]] (''G'') is<ref name=Johnson1994>Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions Vol 1. Wiley Series in Probability and Statistics.</ref> : <math> G = x_\text{m} \exp \left( \frac{1}{\alpha} \right).</math> ===Harmonic mean=== The [[harmonic mean]] (''H'') is<ref name="Johnson1994"/> : <math> H = x_\text{m} \left( 1 + \frac{ 1 }{ \alpha } \right).</math> ===Graphical representation=== The characteristic curved '[[long tail]]' distribution, when plotted on a linear scale, masks the underlying simplicity of the function when plotted on a [[log-log graph]], which then takes the form of a straight line with negative gradient: It follows from the formula for the probability density function that for ''x'' β₯ ''x''<sub>m</sub>, :<math>\log f_X(x)= \log \left(\alpha\frac{x_\mathrm{m}^\alpha}{x^{\alpha+1}}\right) = \log (\alpha x_\mathrm{m}^\alpha) - (\alpha+1) \log x.</math> Since ''Ξ±'' is positive, the gradient β(''Ξ±'' + 1) is negative.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Pareto distribution
(section)
Add topic