Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Nusselt number
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Empirical correlations== Typically, for free convection, the average Nusselt number is expressed as a function of the [[Rayleigh number]] and the [[Prandtl number]], written as: :<math>\mathrm{Nu} = f(\mathrm{Ra}, \mathrm{Pr})</math> Otherwise, for forced convection, the Nusselt number is generally a function of the [[Reynolds number]] and the [[Prandtl number]], or :<math>\mathrm{Nu} = f(\mathrm{Re}, \mathrm{Pr})</math> [[Wiktionary:empirical|Empirical]] correlations for a wide variety of geometries are available that express the Nusselt number in the aforementioned forms. === Free convection === ====Free convection at a vertical wall==== Cited{{r|incropera|p=493}} as coming from Churchill and Chu: :<math>\overline{\mathrm{Nu}}_L \ = 0.68 + \frac{0.663\, \mathrm{Ra}_L^{1/4}}{\left[1 + (0.492/\mathrm{Pr})^{9/16} \, \right]^{4/9} \,} \quad \mathrm{Ra}_L \le 10^8 </math> ====Free convection from horizontal plates==== If the characteristic length is defined :<math>L \ = \frac{A_s}{P}</math> where <math>\mathrm{A}_s</math> is the surface area of the plate and <math>P</math> is its perimeter. Then for the top surface of a hot object in a colder environment or bottom surface of a cold object in a hotter environment{{r|incropera|p=493}} :<math>\overline{\mathrm{Nu}}_L \ = 0.54\, \mathrm{Ra}_L^{1/4} \, \quad 10^4 \le \mathrm{Ra}_L \le 10^7</math> :<math>\overline{\mathrm{Nu}}_L \ = 0.15\, \mathrm{Ra}_L^{1/3} \, \quad 10^7 \le \mathrm{Ra}_L \le 10^{11}</math> And for the bottom surface of a hot object in a colder environment or top surface of a cold object in a hotter environment{{r|incropera|p=493}} :<math>\overline{\mathrm{Nu}}_L \ = 0.52\, \mathrm{Ra}_L^{1/5} \, \quad 10^5 \le \mathrm{Ra}_L \le 10^{10}</math> ====Free convection from enclosure heated from below==== Cited<ref name="bejanauth">{{cite book |author-link=Adrian Bejan |last1=Bejan |first1=Adrian|title=Convection Heat Transfer |url=https://www.researchgate.net/profile/Gamal-Abdelaziz-2/post/How_to_calculate_Nusselt_number_if_an_enclosure_is_heated_from_two_sides_horizontally_and_vertically/attachment/5f511b80ed60840001ca5842/AS%3A931720878649344%401599150976439/download/Adrian+Bejan%28auth.%29-Convection+Heat+Transfer%2C+Fourth+Edition+%282013%29.pdf?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InF1ZXN0aW9uIn19 |url-access=limited |edition=4th |publisher=Wiley |year=2013 |isbn=978-0-470-90037-6 }}</ref> as coming from Bejan: :<math>\overline{\mathrm{Nu}}_L \ = 0.069\, \mathrm{Ra}_L^{1/3}Pr^{0.074} \, \quad 3 * 10^5 \le \mathrm{Ra}_L \le 7 * 10^{9}</math> This equation <i>"holds when the horizontal layer is sufficiently wide so that the effect of the short vertical sides is minimal."</i> It was empirically determined by Globe and Dropkin in 1959:<ref>{{Cite journal |last1=Globe |first1=Samuel |last2=Dropkin |first2=David |date=1959 |title=Natural-Convection Heat Transfer in Liquids Confined by Two Horizontal Plates and Heated From Below |url=https://asmedigitalcollection.asme.org/heattransfer/article-abstract/81/1/24/397579/Natural-Convection-Heat-Transfer-in-Liquids?redirectedFrom=fulltext |journal=Journal of Heat Transfer |volume=81 |issue=1 |pages=24â28 |doi=10.1115/1.4008124 |via=ASME Digital Collection}}</ref> <i>"Tests were made in cylindrical containers having copper tops and bottoms and insulating walls."</i> The containers used were around 5" in diameter and 2" high. ===Flat plate in laminar flow=== The local Nusselt number for laminar flow over a flat plate, at a distance <math>x</math> downstream from the edge of the plate, is given by{{r|incropera|p=490}} :<math>\mathrm{Nu}_x\ = 0.332\, \mathrm{Re}_x^{1/2}\, \mathrm{Pr}^{1/3}, (\mathrm{Pr} > 0.6) </math> The average Nusselt number for laminar flow over a flat plate, from the edge of the plate to a downstream distance <math>x</math>, is given by{{r|incropera|p=490}} :<math>\overline{\mathrm{Nu}}_x \ = {2} \cdot 0.332\, \mathrm{Re}_x^{1/2}\, \mathrm{Pr}^{1/3}\ = 0.664\, \mathrm{Re}_x^{1/2}\, \mathrm{Pr}^{1/3}, (\mathrm{Pr} > 0.6) </math> ===Sphere in convective flow=== In some applications, such as the evaporation of spherical liquid droplets in air, the following correlation is used:<ref>{{cite book |last1=McAllister |first1=Sara |last2=Chen |first2=Jyh-Yuan |last3=FernĂĄndez Pello |first3=Carlos |title=Fundamentals of combustion processes |date=2011 |publisher=Springer |location=New York |isbn=978-1-4419-7942-1 |page=159 |chapter=Droplet Vaporization in Convective Flow |doi=10.1007/978-1-4419-7943-8 |lccn=2011925371 |series=Mechanical Engineering}}</ref> :<math>\mathrm{Nu}_D \ = {2} + 0.4\, \mathrm{Re}_D^{1/2}\, \mathrm{Pr}^{1/3}\, </math> ===Forced convection in turbulent pipe flow=== ====Gnielinski correlation==== Gnielinski's correlation for turbulent flow in tubes:<ref name="incropera">{{cite book |author-link=Frank P. Incropera |last1=Incropera |first1=Frank P. |last2=DeWitt |first2=David P. |title=Fundamentals of Heat and Mass Transfer |url=https://archive.org/details/fundamentalsheat00incr_617 |url-access=limited |edition=6th |location=Hoboken |publisher=Wiley |year=2007 |isbn=978-0-471-45728-2 }}</ref>{{rp|pp=490,515}}<ref name="Gnielinski1975">{{cite journal |last=Gnielinski |first=Volker |title=Neue Gleichungen fĂźr den Wärme- und den StoffĂźbergang in turbulent durchstrĂśmten Rohren und Kanälen |pages=8â16 |year=1975 |journal=Forsch. Ing.-Wes. |volume=41 |issue=1|doi=10.1007/BF02559682 |s2cid=124105274 }}</ref> :<math>\mathrm{Nu}_D = \frac{ \left( f/8 \right) \left( \mathrm{Re}_D - 1000 \right) \mathrm{Pr} } {1 + 12.7(f/8)^{1/2} \left( \mathrm{Pr}^{2/3} - 1 \right)}</math> where f is the [[Darcy friction factor]] that can either be obtained from the [[Moody chart]] or for smooth tubes from correlation developed by Petukhov:{{r|incropera|p=490}} :<math>f= \left( 0.79 \ln \left(\mathrm{Re}_D \right)-1.64 \right)^{-2}</math> The Gnielinski Correlation is valid for:{{r|incropera|p=490}} :<math>0.5 \le \mathrm{Pr} \le 2000</math> :<math>3000 \le \mathrm{Re}_D \le 5 \times 10^{6}</math> ====DittusâBoelter equation==== The DittusâBoelter equation (for turbulent flow) as introduced by W.H. McAdams<ref>{{cite journal |last1=Winterton |first1=R.H.S. |title=Where did the Dittus and Boelter equation come from? |journal=International Journal of Heat and Mass Transfer |date=February 1998 |volume=41 |issue=4â5 |pages=809â810 |doi=10.1016/S0017-9310(97)00177-4 |publisher=Elsevier|bibcode=1998IJHMT..41..809W |url=http://herve.lemonnier.sci.free.fr/TPF/NE/Winterton.pdf}}</ref> is an [[explicit function]] for calculating the Nusselt number. It is easy to solve but is less accurate when there is a large temperature difference across the fluid. It is tailored to smooth tubes, so use for rough tubes (most commercial applications) is cautioned. The DittusâBoelter equation is: :<math>\mathrm{Nu}_D = 0.023\, \mathrm{Re}_D^{4/5}\, \mathrm{Pr}^{n}</math> where: :<math>D</math> is the inside diameter of the circular duct :<math>\mathrm{Pr}</math> is the [[Prandtl number]] :<math>n = 0.4</math> for the fluid being heated, and <math>n = 0.3</math> for the fluid being cooled.{{r|incropera|p=493}} The DittusâBoelter equation is valid for{{r|incropera|p=514}} :<math>0.6 \le \mathrm{Pr} \le 160</math> :<math>\mathrm{Re}_D \gtrsim 10\,000</math> :<math>\frac{L}{D} \gtrsim 10</math> The DittusâBoelter equation is a good approximation where temperature differences between bulk fluid and heat transfer surface are minimal, avoiding equation complexity and iterative solving. Taking water with a bulk fluid average temperature of {{cvt|20|C}}, viscosity {{val|10.07e-4|u=Pa.s}} and a heat transfer surface temperature of {{cvt|40|C}} (viscosity {{val|6.96e-4|u=Pa.s}}, a viscosity correction factor for <math>({\mu} / {\mu_s})</math> can be obtained as 1.45. This increases to 3.57 with a heat transfer surface temperature of {{cvt|100|C}} (viscosity {{val|2.82e-4|u=Pa.s}}), making a significant difference to the Nusselt number and the heat transfer coefficient. ====SiederâTate correlation==== The SiederâTate correlation for turbulent flow is an [[implicit function]], as it analyzes the system as a nonlinear [[boundary value problem]]. The SiederâTate result can be more accurate as it takes into account the change in [[viscosity]] (<math>\mu</math> and <math>\mu_s</math>) due to temperature change between the bulk fluid average temperature and the heat transfer surface temperature, respectively. The SiederâTate correlation is normally solved by an iterative process, as the viscosity factor will change as the Nusselt number changes.<ref>{{cite web |url=http://www.profjrwhite.com/math_methods/pdf_files_hw/sgtm3.pdf |title=Temperature Profile in Steam Generator Tube Metal |access-date=23 September 2009 |archive-url=https://web.archive.org/web/20160303224930/http://www.profjrwhite.com/math_methods/pdf_files_hw/sgtm3.pdf |archive-date=3 March 2016 |url-status=dead }}</ref> :<math>\mathrm{Nu}_D = 0.027\,\mathrm{Re}_D^{4/5}\, \mathrm{Pr}^{1/3}\left(\frac{\mu}{\mu_s}\right)^{0.14}</math>{{r|incropera|p=493}} where: :<math>\mu</math> is the fluid viscosity at the bulk fluid temperature :<math>\mu_s</math> is the fluid viscosity at the heat-transfer boundary surface temperature The SiederâTate correlation is valid for{{r|incropera|p=493}} :<math>0.7 \le \mathrm{Pr} \le 16\,700</math> :<math>\mathrm{Re}_D \ge 10\,000</math> :<math>\frac{L}{D} \gtrsim 10</math> ===Forced convection in fully developed laminar pipe flow=== For fully developed internal laminar flow, the Nusselt numbers tend towards a constant value for long pipes. For internal flow: :<math>\mathrm{Nu} = \frac{h D_h}{k_f}</math> where: :''D<sub>h</sub>'' = [[Hydraulic diameter]] :''k<sub>f</sub>'' = [[thermal conductivity]] of the fluid :''h'' = [[convective]] [[heat transfer coefficient]] ====Convection with uniform temperature for circular tubes==== From Incropera & DeWitt,{{r|incropera|pp=486-487}} :<math>\mathrm{Nu}_D = 3.66</math> OEIS sequence {{OEIS link|A282581}} gives this value as <math>\mathrm{Nu}_D = 3.6567934577632923619...</math>. ====Convection with uniform heat flux for circular tubes==== For the case of constant surface heat flux,{{r|incropera|pp=486-487}} :<math>\mathrm{Nu}_D = 4.36</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Nusselt number
(section)
Add topic