Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Normed vector space
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Linear maps and dual spaces== The most important maps between two normed vector spaces are the [[Continuous function (topology)|continuous]] [[Linear transformation|linear maps]]. Together with these maps, normed vector spaces form a [[Category theory|category]]. The norm is a continuous function on its vector space. All linear maps between finite-dimensional vector spaces are also continuous. An ''isometry'' between two normed vector spaces is a linear map <math>f</math> which preserves the norm (meaning <math>\|f(\mathbf{v})\| = \|\mathbf{v}\|</math> for all vectors <math>\mathbf{v}</math>). Isometries are always continuous and [[injective]]. A [[surjective]] isometry between the normed vector spaces <math>V</math> and <math>W</math> is called an ''isometric isomorphism'', and <math>V</math> and <math>W</math> are called ''isometrically isomorphic''. Isometrically isomorphic normed vector spaces are identical for all practical purposes. When speaking of normed vector spaces, we augment the notion of [[dual space]] to take the norm into account. The dual <math>V^{\prime}</math> of a normed vector space <math>V</math> is the space of all ''continuous'' linear maps from <math>V</math> to the base field (the complexes or the reals) — such linear maps are called "functionals". The norm of a functional <math>\varphi</math> is defined as the [[supremum]] of <math>|\varphi(\mathbf{v})|</math> where <math>\mathbf{v}</math> ranges over all unit vectors (that is, vectors of norm <math>1</math>) in <math>V.</math> This turns <math>V^{\prime}</math> into a normed vector space. An important theorem about continuous linear functionals on normed vector spaces is the [[Hahn–Banach theorem]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Normed vector space
(section)
Add topic