Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Newton's law of cooling
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Biot number === {{main|Biot number}} The Biot number, a dimensionless quantity, is defined for a body as <math display="block">\text{Bi} = \frac{h L_{\rm C}}{k_{\rm b}},</math> where * ''h'' = film coefficient or [[heat transfer coefficient]] or convective heat transfer coefficient, * ''L''<sub>C</sub> = [[characteristic length]], which is commonly defined as the volume of the body divided by the surface area of the body, such that <math>L_{\rm C} = V_\text{body} / A_\text{surface}</math>, * ''k''<sub>b</sub> = [[thermal conductivity]] of the body. The physical significance of Biot number can be understood by imagining the heat flow from a hot metal sphere suddenly immersed in a pool to the surrounding fluid. The heat flow experiences two resistances: the first outside the surface of the sphere, and the second within the solid metal (which is influenced by both the size and composition of the sphere). The ratio of these resistances is the dimensionless Biot number. If the thermal resistance at the fluid/sphere interface exceeds that thermal resistance offered by the interior of the metal sphere, the Biot number will be less than one. For systems where it is much less than one, the interior of the sphere may be presumed always to have the same temperature, although this temperature may be changing, as heat passes into the sphere from the surface. The equation to describe this change in (relatively uniform) temperature inside the object, is the simple exponential one described in Newton's law of cooling expressed in terms of temperature difference (see below). In contrast, the metal sphere may be large, causing the characteristic length to increase to the point that the Biot number is larger than one. In this case, temperature gradients within the sphere become important, even though the sphere material is a good conductor. Equivalently, if the sphere is made of a thermally insulating (poorly conductive) material, such as wood or styrofoam, the interior resistance to heat flow will exceed that at the fluid/sphere boundary, even with a much smaller sphere. In this case, again, the Biot number will be greater than one. Values of the Biot number smaller than 0.1 imply that the heat conduction inside the body is much faster than the heat convection away from its surface, and temperature [[gradient]]s are negligible inside of it. This can indicate the applicability (or inapplicability) of certain methods of solving transient heat transfer problems. For example, a Biot number less than 0.1 typically indicates less than 5% error will be present when assuming a [[lumped-capacitance model]] of transient heat transfer (also called lumped system analysis).<ref>{{cite book | author1 = Frank Incropera | author2 = Theodore L. Bergman | author3 = David DeWitt | author4 = Adrienne S. Lavine | author4-link = Adrienne Lavine | title = Fundamentals of Heat and Mass Transfer | url = https://archive.org/details/fundamentalsheat00incr_869 | url-access = limited | edition = 6th | year = 2007 | isbn = 978-0-471-45728-2 | publisher = [[John Wiley & Sons]] | pages = [https://archive.org/details/fundamentalsheat00incr_869/page/n267 260]β261}}</ref> Typically, this type of analysis leads to simple exponential heating or cooling behavior ("Newtonian" cooling or heating) since the internal energy of the body is directly proportional to its temperature, which in turn determines the rate of heat transfer into or out of it. This leads to a simple first-order differential equation which describes [[heat transfer]] in these systems. Having a Biot number smaller than 0.1 labels a substance as "thermally thin," and temperature can be assumed to be constant throughout the material's volume. The opposite is also true: A Biot number greater than 0.1 (a "thermally thick" substance) indicates that one cannot make this assumption, and more complicated heat transfer equations for "transient heat conduction" will be required to describe the time-varying and non-spatially-uniform temperature field within the material body. Analytic methods for handling these problems, which may exist for simple geometric shapes and uniform material [[thermal conductivity]], are described in the article on the [[heat equation]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Newton's law of cooling
(section)
Add topic