Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Necessity and sufficiency
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Relationship between necessity and sufficiency== [[File:Set intersection.svg|thumb|260 px|Being in the purple region is sufficient for being in A, but not necessary. Being in A is necessary for being in the purple region, but not sufficient. Being in A and being in B is necessary and sufficient for being in the purple region.]] A condition can be either necessary or sufficient without being the other. For instance, ''being a [[mammal]]'' (''N'') is necessary but not sufficient to ''being human'' (''S''), and that a number <math>x</math> ''is rational'' (''S'') is sufficient but not necessary to <math>x</math> ''being a [[real number]]'' (''N'') (since there are real numbers that are not rational). A condition can be both necessary and sufficient. For example, at present, "today is the [[Fourth of July]]" is a necessary and sufficient condition for "today is [[Independence Day (United States)|Independence Day]] in the [[United States]]". Similarly, a necessary and sufficient condition for [[Inverse matrix|invertibility]] of a [[matrix (mathematics)|matrix]] ''M'' is that ''M'' has a nonzero [[determinant]]. Mathematically speaking, necessity and sufficiency are [[duality (mathematics)|dual]] to one another. For any statements ''S'' and ''N'', the assertion that "''N'' is necessary for ''S''" is equivalent to the assertion that "''S'' is sufficient for ''N''". Another facet of this duality is that, as illustrated above, conjunctions (using "and") of necessary conditions may achieve sufficiency, while disjunctions (using "or") of sufficient conditions may achieve necessity. For a third facet, identify every mathematical [[predicate (mathematics)|predicate]] ''N'' with the set ''T''(''N'') of objects, events, or statements for which ''N'' holds true; then asserting the necessity of ''N'' for ''S'' is equivalent to claiming that ''T''(''N'') is a [[superset]] of ''T''(''S''), while asserting the sufficiency of ''S'' for ''N'' is equivalent to claiming that ''T''(''S'') is a [[subset]] of ''T''(''N''). Psychologically speaking, necessity and sufficiency are both key aspects of the classical view of concepts. Under the classical theory of concepts, how human minds represent a category X, gives rise to a set of individually necessary conditions that define X. Together, these individually necessary conditions are sufficient to be X.<ref>{{cite web | url=https://iep.utm.edu/classical-theory-of-concepts/ | title=Classical Theory of Concepts, the | Internet Encyclopedia of Philosophy }}</ref> This contrasts with the probabilistic theory of concepts which states that no defining feature is necessary or sufficient, rather that categories resemble a family tree structure.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Necessity and sufficiency
(section)
Add topic