Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Molecular orbital
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Linear combinations of atomic orbitals (LCAO)=== {{main|Linear combination of atomic orbitals}} Molecular orbitals were first introduced by [[Friedrich Hund]]<ref name="Hund1926">{{cite journal | last=Hund | first=F. | title=Zur Deutung einiger Erscheinungen in den Molekelspektren |trans-title=On the interpretation of some phenomena in molecular spectra | journal=Zeitschrift für Physik | publisher=Springer Science and Business Media LLC | volume=36 | issue=9–10 | year=1926 | issn=1434-6001 | doi=10.1007/bf01400155 | pages=657–674 | bibcode=1926ZPhy...36..657H | s2cid=123208730 | language=de}}</ref><ref>F. Hund, "Zur Deutung der Molekelspektren", ''Zeitschrift für Physik'', Part I, vol. 40, pages 742-764 (1927); Part II, vol. 42, pages 93–120 (1927); Part III, vol. 43, pages 805-826 (1927); Part IV, vol. 51, pages 759-795 (1928); Part V, vol. 63, pages 719-751 (1930).</ref> and [[Robert S. Mulliken]]<ref name="Mulliken1927">{{cite journal | last=Mulliken | first=Robert S. | title=Electronic States and Band Spectrum Structure in Diatomic Molecules. IV. Hund's Theory; Second Positive Nitrogen and Swan Bands; Alternating Intensities | journal=[[Physical Review]] | publisher=American Physical Society (APS) | volume=29 | issue=5 | date=1 May 1927 | issn=0031-899X | doi=10.1103/physrev.29.637 | pages=637–649| bibcode=1927PhRv...29..637M }}</ref><ref name="Mulliken1928">{{cite journal | last=Mulliken | first=Robert S. | title=The assignment of quantum numbers for electrons in molecules. Extracts from Phys. Rev. 32, 186-222 (1928), plus currently written annotations | journal=International Journal of Quantum Chemistry | publisher=Wiley | volume=1 | issue=1 | year=1928 | issn=0020-7608 | doi=10.1002/qua.560010106 | pages=103–117}}</ref> in 1927 and 1928.<ref>[[Friedrich Hund]] and Chemistry, [[Werner Kutzelnigg]], on the occasion of Hund's 100th birthday, ''[[Angewandte Chemie International Edition]]'', 35, 573–586, (1996)</ref><ref>[[Robert S. Mulliken]]'s Nobel Lecture, ''[[Science (journal)|Science]]'', 157, no. 3785, 13-24. Available on-line at: [http://nobelprize.org/nobel_prizes/chemistry/laureates/1966/mulliken-lecture.pdf Nobelprize.org]</ref> The [[linear combination of atomic orbitals]] or "LCAO" approximation for molecular orbitals was introduced in 1929 by [[John Lennard-Jones|Sir John Lennard-Jones]].<ref>{{cite journal| url=https://www.chemteam.info/Chem-History/Lennard-Jones-1929/Lennard-Jones-1929.html |last1=Lennard-Jones |first1=John (Sir) |author1-link=John Lennard-Jones |title=The electronic structure of some diatomic molecules |journal=Transactions of the Faraday Society |volume=25 |pages=668–686 |date=1929|doi=10.1039/tf9292500668 |bibcode=1929FaTr...25..668L }}</ref> His ground-breaking paper showed how to derive the electronic structure of the [[fluorine]] and [[oxygen]] molecules from quantum principles. This qualitative approach to molecular orbital theory is part of the start of modern [[quantum chemistry]]. Linear combinations of atomic orbitals (LCAO) can be used to estimate the molecular orbitals that are formed upon bonding between the molecule's constituent atoms. Similar to an atomic orbital, a Schrödinger equation, which describes the behavior of an electron, can be constructed for a molecular orbital as well. Linear combinations of atomic orbitals, or the sums and differences of the atomic wavefunctions, provide approximate solutions to the [[Hartree–Fock method|Hartree–Fock equations]] which correspond to the independent-particle approximation of the molecular [[Schrödinger equation]]. For simple diatomic molecules, the wavefunctions obtained are represented mathematically by the equations :<math>\Psi = c_a \psi_a + c_b \psi_b</math> :<math>\Psi^* = c_a \psi_a - c_b \psi_b</math> where <math>\Psi</math> and <math>\Psi^*</math> are the molecular wavefunctions for the bonding and antibonding molecular orbitals, respectively, <math>\psi_a</math> and <math>\psi_b</math> are the atomic wavefunctions from atoms a and b, respectively, and <math>c_a</math> and <math>c_b</math> are adjustable coefficients. These coefficients can be positive or negative, depending on the energies and symmetries of the individual atomic orbitals. As the two atoms become closer together, their atomic orbitals overlap to produce areas of high electron density, and, as a consequence, molecular orbitals are formed between the two atoms. The atoms are held together by the electrostatic attraction between the positively charged nuclei and the negatively charged electrons occupying bonding molecular orbitals.<ref name="Gary L. Miessler 2004">{{cite book | last1=Miessler | first1=G.L. |last2=Tarr |first2=Donald A. | title=Inorganic Chemistry | publisher=Pearson Education | year=2008 | isbn=978-81-317-1885-8 | url=https://books.google.com/books?id=rBfolO_rhf8C}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Molecular orbital
(section)
Add topic