Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Mathematical induction
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Sum of consecutive natural numbers === Mathematical induction can be used to prove the following statement {{math|''P''(''n'')}} for all natural numbers {{mvar|n}}. <math display="block">P(n)\!:\ \ 0 + 1 + 2 + \cdots + n = \frac{n(n + 1)}{2}.</math> This states a general formula for the sum of the natural numbers less than or equal to a given number; in fact an infinite sequence of statements: <math>0 = \tfrac{(0)(0+1)}2</math>, <math>0+1 = \tfrac{(1)(1+1)}2</math>, <math>0+1+2 = \tfrac{(2)(2+1)}2</math>, etc. '''<u>Proposition.</u>''' For every <math>n\in\mathbb{N}</math>, <math>0 + 1 + 2 + \cdots + n = \tfrac{n(n + 1)}{2}.</math> '''Proof.''' Let {{math|''P''(''n'')}} be the statement <math>0 + 1 + 2 + \cdots + n = \tfrac{n(n + 1)}{2}.</math> We give a proof by induction on {{mvar|n}}. ''Base case:'' Show that the statement holds for the smallest natural number {{math|1=''n'' = 0}}. {{math|''P''(0)}} is clearly true: <math>0 = \tfrac{0(0 + 1)}{2}\,.</math> ''Induction step:'' Show that for every {{math|''k'' β₯ 0}}, if {{math|''P''(''k'')}} holds, then {{math|''P''(''k'' + 1)}} also holds. Assume the induction hypothesis that for a particular {{mvar|k}}, the single case {{math|1=''n'' = ''k''}} holds, meaning {{math|''P''(''k'')}} is true:<math display="block">0 + 1 + \cdots + k = \frac{k(k+1)}2.</math> It follows that: <math display="block">(0 + 1 + 2 + \cdots + k )+ (k+1) = \frac{k(k+1)}2 + (k+1).</math> [[Algebra]]ically, the right hand side simplifies as: <math display="block">\begin{align} \frac{k(k+1)}{2} + (k+1) &= \frac{k(k+1) + 2(k+1)}{2} \\ &= \frac{(k+1)(k+2)}{2} \\ &= \frac{(k+1)((k+1) + 1)}{2}. \end{align}</math> Equating the extreme left hand and right hand sides, we deduce that:<math display="block">0 + 1 + 2 + \cdots + k + (k+1) = \frac{(k+1)((k+1)+1)}2.</math> That is, the statement {{math|''P''(''k'' + 1)}} also holds true, establishing the induction step. ''Conclusion:'' Since both the base case and the induction step have been proved as true, by mathematical induction the statement {{math|''P''(''n'')}} holds for every natural number {{mvar|n}}. [[Q.E.D.]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Mathematical induction
(section)
Add topic