Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Lysine
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Catabolism== [[File:Saccharopine Pathway Final.tiff|thumb|upright=0.8|'''Saccharopine lysine catabolism pathway.''' The saccharopine pathway is the most prominent pathway for the catabolism of lysine.]] As with all amino acids, [[catabolism]] of lysine is initiated from the uptake of dietary lysine or from the breakdown of [[intracellular]] protein. Catabolism is also used as a means to control the intracellular concentration of free lysine and maintain a [[Steady state|steady-state]] to prevent the toxic effects of excessive free lysine.<ref name="Zhu_2004">{{cite journal | vauthors = Zhu X, Galili G | title = Lysine metabolism is concurrently regulated by synthesis and catabolism in both reproductive and vegetative tissues | journal = Plant Physiology | volume = 135 | issue = 1 | pages = 129–136 | date = May 2004 | pmid = 15122025 | pmc = 429340 | doi = 10.1104/pp.103.037168 }}</ref> There are several pathways involved in lysine catabolism but the most commonly used is the saccharopine pathway, which primarily takes place in the [[liver]] (and equivalent organs) in animals, specifically within the [[Mitochondrion|mitochondria]].<ref name="Tomé_2007">{{cite journal | vauthors = Tomé D, Bos C | title = Lysine requirement through the human life cycle | journal = The Journal of Nutrition | volume = 137 | issue = 6 Suppl 2 | pages = 1642S–1645S | date = June 2007 | pmid = 17513440 | doi = 10.1093/jn/137.6.1642S | doi-access = free }}</ref><ref name="Zhu_2004" /><ref>{{cite journal | vauthors = Blemings KP, Crenshaw TD, Swick RW, Benevenga NJ | title = Lysine-alpha-ketoglutarate reductase and saccharopine dehydrogenase are located only in the mitochondrial matrix in rat liver | journal = The Journal of Nutrition | volume = 124 | issue = 8 | pages = 1215–1221 | date = August 1994 | pmid = 8064371 | doi = 10.1093/jn/124.8.1215 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Galili G, Tang G, Zhu X, Gakiere B | title = Lysine catabolism: a stress and development super-regulated metabolic pathway | journal = Current Opinion in Plant Biology | volume = 4 | issue = 3 | pages = 261–266 | date = June 2001 | pmid = 11312138 | doi = 10.1016/s1369-5266(00)00170-9 | bibcode = 2001COPB....4..261G }}</ref> This is the reverse of the previously described AAA pathway.<ref name="Tomé_2007" /><ref>{{cite journal | vauthors = Arruda P, Kemper EL, Papes F, Leite A | title = Regulation of lysine catabolism in higher plants | journal = Trends in Plant Science | volume = 5 | issue = 8 | pages = 324–330 | date = August 2000 | pmid = 10908876 | doi = 10.1016/s1360-1385(00)01688-5 }}</ref> In animals and plants, the first two steps of the saccharopine pathway are catalysed by the bifunctional enzyme, [[Alpha-aminoadipic semialdehyde synthase, mitochondrial|α-aminoadipic semialdehyde synthase (AASS)]], which possess both lysine-ketoglutarate reductase (LKR) (E.C 1.5.1.8) and SDH activities, whereas in other organisms, such as bacteria and fungi, both of these enzymes are encoded by separate [[gene]]s.<ref>{{cite journal | vauthors = Sacksteder KA, Biery BJ, Morrell JC, Goodman BK, Geisbrecht BV, Cox RP, Gould SJ, Geraghty MT | title = Identification of the alpha-aminoadipic semialdehyde synthase gene, which is defective in familial hyperlysinemia | journal = American Journal of Human Genetics | volume = 66 | issue = 6 | pages = 1736–1743 | date = June 2000 | pmid = 10775527 | pmc = 1378037 | doi = 10.1086/302919 }}</ref><ref>{{cite journal | vauthors = Zhu X, Tang G, Galili G | title = The activity of the Arabidopsis bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase enzyme of lysine catabolism is regulated by functional interaction between its two enzyme domains | journal = The Journal of Biological Chemistry | volume = 277 | issue = 51 | pages = 49655–49661 | date = December 2002 | pmid = 12393892 | doi = 10.1074/jbc.m205466200 | doi-access = free }}</ref> The first step involves the LKR catalysed reduction of <small>L</small>-lysine in the presence of α-ketoglutarate to produce saccharopine, with NAD(P)H acting as a proton donor.<ref name="Kiyota_2015">{{cite journal | vauthors = Kiyota E, Pena IA, Arruda P | title = The saccharopine pathway in seed development and stress response of maize | journal = Plant, Cell & Environment | volume = 38 | issue = 11 | pages = 2450–2461 | date = November 2015 | pmid = 25929294 | doi = 10.1111/pce.12563 | doi-access = free }}</ref> Saccharopine then undergoes a dehydration reaction, catalysed by SDH in the presence of [[Nicotinamide adenine dinucleotide|NAD<sup>+</sup>]], to produce AAS and glutamate.<ref>{{cite journal | vauthors = Serrano GC, Rezende e Silva Figueira T, Kiyota E, Zanata N, Arruda P | title = Lysine degradation through the saccharopine pathway in bacteria: LKR and SDH in bacteria and its relationship to the plant and animal enzymes | journal = FEBS Letters | volume = 586 | issue = 6 | pages = 905–911 | date = March 2012 | pmid = 22449979 | doi = 10.1016/j.febslet.2012.02.023 | s2cid = 32385212 | doi-access = free | bibcode = 2012FEBSL.586..905D }}</ref> [[L-aminoadipate-semialdehyde dehydrogenase|AAS dehydrogenase (AASD)]] (E.C 1.2.1.31) then further dehydrates the molecule into AAA.<ref name="Kiyota_2015" /> Subsequently, PLP-AT catalyses the reverse reaction to that of the AAA biosynthesis pathway, resulting in AAA being converted to α-ketoadipate. The product, α‑ketoadipate, is decarboxylated in the presence of NAD<sup>+</sup> and coenzyme A to yield glutaryl-CoA, however the enzyme involved in this is yet to be fully elucidated.<ref name="Danhauser_2012">{{cite journal | vauthors = Danhauser K, Sauer SW, Haack TB, Wieland T, Staufner C, Graf E, Zschocke J, Strom TM, Traub T, Okun JG, Meitinger T, Hoffmann GF, Prokisch H, Kölker S | title = DHTKD1 mutations cause 2-aminoadipic and 2-oxoadipic aciduria | journal = American Journal of Human Genetics | volume = 91 | issue = 6 | pages = 1082–1087 | date = December 2012 | pmid = 23141293 | pmc = 3516599 | doi = 10.1016/j.ajhg.2012.10.006 }}</ref><ref>{{cite journal | vauthors = Sauer SW, Opp S, Hoffmann GF, Koeller DM, Okun JG, Kölker S | title = Therapeutic modulation of cerebral <small>L</small>-lysine metabolism in a mouse model for glutaric aciduria type I | journal = Brain | volume = 134 | issue = Pt 1 | pages = 157–170 | date = January 2011 | pmid = 20923787 | doi = 10.1093/brain/awq269 | doi-access = free }}</ref> Some evidence suggests that the 2-oxoadipate dehydrogenase complex (OADHc), which is structurally homologous to the E1 subunit of the [[Oxoglutarate dehydrogenase complex|oxoglutarate dehydrogenase complex (OGDHc)]] (E.C 1.2.4.2), is responsible for the decarboxylation reaction.<ref name="Danhauser_2012" /><ref>{{cite journal | vauthors = Goncalves RL, Bunik VI, Brand MD | title = Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex | journal = Free Radical Biology & Medicine | volume = 91 | pages = 247–255 | date = February 2016 | pmid = 26708453 | doi = 10.1016/j.freeradbiomed.2015.12.020 | doi-access = free }}</ref> Finally, glutaryl-CoA is oxidatively decarboxylated to crotonyl-CoA by [[glutaryl-CoA dehydrogenase]] (E.C 1.3.8.6), which goes on to be further processed through multiple enzymatic steps to yield acetyl-CoA; an essential carbon [[metabolite]] involved in the [[Citric acid cycle|tricarboxylic acid cycle (TCA)]].<ref name="Kiyota_2015" /><ref>{{cite journal | vauthors = Goh DL, Patel A, Thomas GH, Salomons GS, Schor DS, Jakobs C, Geraghty MT | title = Characterization of the human gene encoding alpha-aminoadipate aminotransferase (AADAT) | journal = Molecular Genetics and Metabolism | volume = 76 | issue = 3 | pages = 172–180 | date = July 2002 | pmid = 12126930 | doi = 10.1016/s1096-7192(02)00037-9 }}</ref><ref>{{cite journal | vauthors = Härtel U, Eckel E, Koch J, Fuchs G, Linder D, Buckel W | title = Purification of glutaryl-CoA dehydrogenase from Pseudomonas sp., an enzyme involved in the anaerobic degradation of benzoate | journal = Archives of Microbiology | volume = 159 | issue = 2 | pages = 174–181 | date = 1993-02-01 | pmid = 8439237 | doi = 10.1007/bf00250279 | bibcode = 1993ArMic.159..174H | s2cid = 2262592 }}</ref><ref>{{cite journal | vauthors = Sauer SW | title = Biochemistry and bioenergetics of glutaryl-CoA dehydrogenase deficiency | journal = Journal of Inherited Metabolic Disease | volume = 30 | issue = 5 | pages = 673–680 | date = October 2007 | pmid = 17879145 | doi = 10.1007/s10545-007-0678-8 | s2cid = 20609879}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Lysine
(section)
Add topic