Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
List of small groups
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== List of small non-abelian groups== The numbers of non-abelian groups, by order, are counted by {{OEIS|id=A060689}}. However, many orders have no non-abelian groups. The orders for which a non-abelian group exists are : 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 34, 36, 38, 39, 40, 42, 44, 46, 48, 50, ... {{OEIS|id=A060652}} {| class="wikitable" |+ List of all nonabelian groups up to order 31 |- ! Order ! Id.{{efn|name=id}} ! G<sub>''o''</sub><sup>''i''</sup> ! Group ! Non-trivial proper subgroups<ref name= Dockchitser >{{cite web |last=Dockchitser |first=Tim |title=Group Names |url=https://people.maths.bris.ac.uk/~matyd/GroupNames/ |access-date=23 May 2023}}</ref> ! [[Cycle graph (algebra)|Cycle <br />graph]] ! Properties |- ! 6 ! 7 ! G<sub>6</sub><sup>1</sup> | D<sub>6</sub> = S<sub>3</sub> = Z<sub>3</sub> β Z<sub>2</sub> | Z<sub>3</sub>, Z<sub>2</sub> (3) | [[Image:GroupDiagramMiniD6.svg|40px]] | [[Dihedral group]], [[Dihedral group of order 6|Dih<sub>3</sub>]], the smallest non-abelian group, symmetric group, smallest [[Frobenius group]]. |- ! rowspan="2" | 8 ! 12 ! G<sub>8</sub><sup>3</sup> | D<sub>8</sub> | Z<sub>4</sub>, Z<sub>2</sub><sup>2</sup> (2), Z<sub>2</sub> (5) | [[Image:GroupDiagramMiniD8.svg|40px]] | Dihedral group, [[dihedral group of order 8|Dih<sub>4</sub>]]. [[Extraspecial group]]. [[Nilpotent group|Nilpotent]]. |- ! 13 ! G<sub>8</sub><sup>4</sup> | Q<sub>8</sub> | Z<sub>4</sub> (3), Z<sub>2</sub> | [[Image:GroupDiagramMiniQ8.svg|40px]] | [[Quaternion group]], [[Hamiltonian group]] (all subgroups are [[normal subgroup|normal]] without the group being abelian). The smallest group ''G'' demonstrating that for a normal subgroup ''H'' the [[quotient group]] ''G''/''H'' need not be isomorphic to a subgroup of ''G''. [[Extraspecial group]]. [[Dicyclic group|Dic<sub>2</sub>]],<ref name="ChenTang2020">{{cite journal|last1=Chen|first1=Jing|last2=Tang|first2=Lang|title=The Commuting Graphs on Dicyclic Groups|journal=Algebra Colloquium|volume=27|issue=4|year=2020|pages=799β806|issn=1005-3867|doi=10.1142/S1005386720000668|s2cid=228827501}}</ref> [[Binary dihedral group]] <2,2,2>.<ref name=anglebracket>{{cite book |last = Coxeter |first = H. S. M. |title = Generators and relations for discrete groups |publisher = Springer |location = Berlin |year = 1957 |isbn = 978-3-662-23654-3 |doi=10.1007/978-3-662-25739-5 |quote=<l,m,n>: R<sup>l</sup>=S<sup>m</sup>=T<sup>n</sup>=RST}}:</ref> Nilpotent. |- ! 10 ! 17 ! G<sub>10</sub><sup>1</sup> | D<sub>10</sub> | Z<sub>5</sub>, Z<sub>2</sub> (5) | [[Image:GroupDiagramMiniD10.svg|40px]] | Dihedral group, Dih<sub>5</sub>, Frobenius group. |- ! rowspan="3" | 12 ! 20 ! G<sub>12</sub><sup>1</sup> | style="white-space:nowrap;" | Q<sub>12</sub> = Z<sub>3</sub> β Z<sub>4</sub> | Z<sub>2</sub>, Z<sub>3</sub>, Z<sub>4</sub> (3), Z<sub>6</sub> | [[Image:GroupDiagramMiniX12.svg|40px]] | [[Dicyclic group]] Dic<sub>3</sub>, Binary dihedral group, <3,2,2>.<ref name=anglebracket/> |- ! 22 ! G<sub>12</sub><sup>3</sup> | A<sub>4</sub> = K<sub>4</sub> β Z<sub>3</sub> = (Z<sub>2</sub> Γ Z<sub>2</sub>) β Z<sub>3</sub> | Z<sub>2</sub><sup>2</sup>, Z<sub>3</sub> (4), Z<sub>2</sub> (3) | [[Image:GroupDiagramMiniA4.svg|40px]] | [[Alternating group]]. No subgroups of order 6, although 6 divides its order. Smallest Frobenius group that is not a dihedral group.<br />Chiral [[tetrahedral symmetry]] (T). |- ! 23 ! G<sub>12</sub><sup>4</sup> | D<sub>12</sub> = D<sub>6</sub> Γ Z<sub>2</sub> | Z<sub>6</sub>, D<sub>6</sub> (2), Z<sub>2</sub><sup>2</sup> (3), Z<sub>3</sub>, Z<sub>2</sub> (7) | [[Image:GroupDiagramMiniD12.svg|40px]] | Dihedral group, Dih<sub>6</sub>, product. |- ! 14 ! 26 ! G<sub>14</sub><sup>1</sup> | D<sub>14</sub> | Z<sub>7</sub>, Z<sub>2</sub> (7) | [[Image:GroupDiagramMiniD14.svg|40px]] | Dihedral group, Dih<sub>7</sub>, Frobenius group. |- ! rowspan="9" | 16<ref>{{cite journal|journal=Am. Math. Mon.|first1=Marcel|last1=Wild|url=http://math.sun.ac.za/~wild/Marcel%20Wild%20-%20Home%20Page_files/Groups16AMM.pdf|title=The Groups of Order Sixteen Made Easy|doi=10.1080/00029890.2005.11920164|year=2005|pages=20β31|volume=112|number=1|jstor=30037381|s2cid=15362871 |archive-url=https://web.archive.org/web/20060923012610/http://math.sun.ac.za/~wild/Marcel%20Wild%20-%20Home%20Page_files/Groups16AMM.pdf |archive-date=2006-09-23 }}</ref> ! 31 ! G<sub>16</sub><sup>3</sup> | K<sub>4</sub> β Z<sub>4</sub> | Z<sub>2</sub><sup>3</sup>, Z<sub>4</sub> Γ Z<sub>2</sub> (2), Z<sub>4</sub> (4), Z<sub>2</sub><sup>2</sup> (7), Z<sub>2</sub> (7) | [[Image:GroupDiagramMiniG44.svg|40px]] | Has the same number of elements of every [[order (group theory)|order]] as the Pauli group. Nilpotent. |- ! 32 ! G<sub>16</sub><sup>4</sup> | Z<sub>4</sub> β Z<sub>4</sub> | Z<sub>4</sub> Γ Z<sub>2</sub> (3), Z<sub>4</sub> (6), Z<sub>2</sub><sup>2</sup>, Z<sub>2</sub> (3) | [[Image:GroupDiagramMinix3.svg|40px]] | The squares of elements do not form a subgroup. Has the same number of elements of every order as Q<sub>8</sub> Γ Z<sub>2</sub>. Nilpotent. |- ! 34 ! G<sub>16</sub><sup>6</sup> | Z<sub>8</sub> β Z<sub>2</sub> | Z<sub>8</sub> (2), Z<sub>4</sub> Γ Z<sub>2</sub>, Z<sub>4</sub> (2), Z<sub>2</sub><sup>2</sup>, Z<sub>2</sub> (3) | [[File:GroupDiagramMOD16.svg|40px]] | Sometimes called the [[Iwasawa group|modular group]] of order 16, though this is misleading as abelian groups and Q<sub>8</sub> Γ Z<sub>2</sub> are also modular. Nilpotent. |- ! 35 ! G<sub>16</sub><sup>7</sup> | D<sub>16</sub> | Z<sub>8</sub>, D<sub>8</sub> (2), Z<sub>2</sub><sup>2</sup> (4), Z<sub>4</sub>, Z<sub>2</sub> (9) | [[Image:GroupDiagramMiniD16.svg|40px]] | Dihedral group, Dih<sub>8</sub>. Nilpotent. |- ! 36 ! G<sub>16</sub><sup>8</sup> | QD<sub>16</sub> | Z<sub>8</sub>, Q<sub>8</sub>, D<sub>8</sub>, Z<sub>4</sub> (3), Z<sub>2</sub><sup>2</sup> (2), Z<sub>2</sub> (5) | [[Image:GroupDiagramMiniQH16.svg|40px]] | The order 16 [[quasidihedral group]]. Nilpotent. |- ! 37 ! G<sub>16</sub><sup>9</sup> | Q<sub>16</sub> | Z<sub>8</sub>, Q<sub>8</sub> (2), Z<sub>4</sub> (5), Z<sub>2</sub> | [[Image:GroupDiagramMiniQ16.svg|40px]] | [[Generalized quaternion group]], Dicyclic group Dic<sub>4</sub>, binary dihedral group, <4,2,2>.<ref name=anglebracket/> Nilpotent. |- ! 39 ! G<sub>16</sub><sup>11</sup> | D<sub>8</sub> Γ Z<sub>2</sub> | D<sub>8</sub> (4), {{nowrap|Z<sub>4</sub> Γ Z<sub>2</sub>}}, Z<sub>2</sub><sup>3</sup> (2), Z<sub>2</sub><sup>2</sup> (13), Z<sub>4</sub> (2), Z<sub>2</sub> (11) | [[Image:GroupDiagramMiniC2D8.svg|40px]] | Product. Nilpotent. |- ! 40 ! G<sub>16</sub><sup>12</sup> | Q<sub>8</sub> Γ Z<sub>2</sub> | Q<sub>8</sub> (4), Z<sub>4</sub> Γ Z<sub>2</sub> (3), Z<sub>4</sub> (6), Z<sub>2</sub><sup>2</sup>, Z<sub>2</sub> (3) | [[Image:GroupDiagramMiniC2Q8.svg|40px]] | [[Hamiltonian group]], product. Nilpotent. |- ! 41 ! G<sub>16</sub><sup>13</sup> | (Z<sub>4</sub> Γ Z<sub>2</sub>) β Z<sub>2</sub> | Q<sub>8</sub>, D<sub>8</sub> (3), Z<sub>4</sub> Γ Z<sub>2</sub> (3), Z<sub>4</sub> (4), Z<sub>2</sub><sup>2</sup> (3), Z<sub>2</sub> (7) | [[Image:GroupDiagramMiniC2x2C4.svg|40px]] | The [[Pauli group]] generated by the [[Pauli matrix|Pauli matrices]]. Nilpotent. |- ! rowspan="3" | 18 ! 44 ! G<sub>18</sub><sup>1</sup> | D<sub>18</sub> | Z<sub>9</sub>, D<sub>6</sub> (3), Z<sub>3</sub>, Z<sub>2</sub> (9) | [[File:GroupDiagramMiniD18.png|40px]] || Dihedral group, Dih<sub>9</sub>, Frobenius group. |- ! 46 ! G<sub>18</sub><sup>3</sup> | Z<sub>3</sub> β Z<sub>6</sub> = D<sub>6</sub> Γ Z<sub>3</sub> = S<sub>3</sub> Γ Z<sub>3</sub> | Z<sub>3</sub><sup>2</sup>, D<sub>6</sub>, Z<sub>6</sub> (3), Z<sub>3</sub> (4), Z<sub>2</sub> (3) | [[File:GroupDiagramMiniC3D6.png|40px]] || Product. |- ! 47 ! G<sub>18</sub><sup>4</sup> | (Z<sub>3</sub> Γ Z<sub>3</sub>) β Z<sub>2</sub> | Z<sub>3</sub><sup>2</sup>, D<sub>6</sub> (12), Z<sub>3</sub> (4), Z<sub>2</sub> (9) | [[File:GroupDiagramMiniG18-4.png|40px]] || Frobenius group. |- ! rowspan="3" | 20 ! 50 ! G<sub>20</sub><sup>1</sup> | Q<sub>20</sub> | Z<sub>10</sub>, Z<sub>5</sub>, Z<sub>4</sub> (5), Z<sub>2</sub> | [[File:GroupDiagramMiniQ20.png|40px]] || Dicyclic group Dic<sub>5</sub>, Binary dihedral group, <5,2,2>.<ref name=anglebracket/> |- ! 52 ! G<sub>20</sub><sup>3</sup> | Z<sub>5</sub> β Z<sub>4</sub> | D<sub>10</sub>, Z<sub>5</sub>, Z<sub>4</sub> (5), Z<sub>2</sub> (5) | [[File:GroupDiagramMiniC5semiprodC4.png|40px]] || Frobenius group. |- ! 53 ! G<sub>20</sub><sup>4</sup> | D<sub>20</sub> = D<sub>10</sub> Γ Z<sub>2</sub> | Z<sub>10</sub>, D<sub>10</sub> (2), Z<sub>5</sub>, Z<sub>2</sub><sup>2</sup> (5), Z<sub>2</sub> (11) | [[File:GroupDiagramMiniD20.png|40px]] || Dihedral group, Dih<sub>10</sub>, product. |- ! 21 ! 55 ! G<sub>21</sub><sup>1</sup> | Z<sub>7</sub> β Z<sub>3</sub> || Z<sub>7</sub>, Z<sub>3</sub> (7) || [[File:Frob21 cycle graph.svg|40px]] || Smallest non-abelian group of [[parity (mathematics)|odd]] order. Frobenius group. |- ! 22 ! 57 ! G<sub>22</sub><sup>1</sup> | D<sub>22</sub> | Z<sub>11</sub>, Z<sub>2</sub> (11) | | Dihedral group Dih<sub>11</sub>, Frobenius group. |- ! rowspan="12" | 24 ! 60 ! G<sub>24</sub><sup>1</sup> | Z<sub>3</sub> β Z<sub>8</sub> | Z<sub>12</sub>, Z<sub>8</sub> (3), Z<sub>6</sub>, Z<sub>4</sub>, Z<sub>3</sub>, Z<sub>2</sub> | [[File:Cycle graph Z3xiZ8.svg|40px]] || Central extension of ''S''<sub>3</sub>. |- ! 62 ! G<sub>24</sub><sup>3</sup> | [[Special linear group|SL]](2,3) = Q<sub>8</sub> β Z<sub>3</sub> | Q<sub>8</sub>, Z<sub>6</sub> (4), Z<sub>4</sub> (3), Z<sub>3</sub> (4), Z<sub>2</sub> | [[File:SL(2,3); Cycle graph.svg|40px]] || [[Binary tetrahedral group]], [[Binary tetrahedral group|2T]] = <3,3,2>.<ref name=anglebracket/> |- ! 63 ! G<sub>24</sub><sup>4</sup> | Q<sub>24</sub> = Z<sub>3</sub> β Q<sub>8</sub> | Z<sub>12</sub>, Q<sub>12</sub> (2), Q<sub>8</sub> (3), Z<sub>6</sub>, Z<sub>4</sub> (7), Z<sub>3</sub>, Z<sub>2</sub> | [[File:GroupDiagramMiniQ24.png|40px]] || Dicyclic group Dic<sub>6</sub>, Binary dihedral, <6,2,2>.<ref name=anglebracket/> |- ! 64 ! G<sub>24</sub><sup>5</sup> | D<sub>6</sub> Γ Z<sub>4</sub> = S<sub>3</sub> Γ Z<sub>4</sub> | Z<sub>12</sub>, D<sub>12</sub>, Q<sub>12</sub>, Z<sub>4</sub> Γ Z<sub>2</sub> (3), Z<sub>6</sub>, D<sub>6</sub> (2), Z<sub>4</sub> (4), Z<sub>2</sub><sup>2</sup> (3), Z<sub>3</sub>, Z<sub>2</sub> (7) | || Product. |- ! 65 ! G<sub>24</sub><sup>6</sup> | D<sub>24</sub> | Z<sub>12</sub>, D<sub>12</sub> (2), D<sub>8</sub> (3), Z<sub>6</sub>, D<sub>6</sub> (4), Z<sub>4</sub>, Z<sub>2</sub><sup>2</sup> (6), Z<sub>3</sub>, Z<sub>2</sub> (13) | || Dihedral group, Dih<sub>12</sub>. |- ! 66 ! G<sub>24</sub><sup>7</sup> | Q<sub>12</sub> Γ Z<sub>2</sub> = Z<sub>2</sub> Γ (Z<sub>3</sub> β Z<sub>4</sub>) | Z<sub>6</sub> Γ Z<sub>2</sub>, Q<sub>12</sub> (2), Z<sub>4</sub> Γ Z<sub>2</sub> (3), Z<sub>6</sub> (3), Z<sub>4</sub> (6), Z<sub>2</sub><sup>2</sup>, Z<sub>3</sub>, Z<sub>2</sub> (3) | || Product. |- ! 67 ! G<sub>24</sub><sup>8</sup> | (Z<sub>6</sub> Γ Z<sub>2</sub>) β Z<sub>2</sub> = Z<sub>3</sub> β D<sub>8</sub> | Z<sub>6</sub> Γ Z<sub>2</sub>, D<sub>12</sub>, Q<sub>12</sub>, D<sub>8</sub> (3), Z<sub>6</sub> (3), D<sub>6</sub> (2), Z<sub>4</sub> (3), Z<sub>2</sub><sup>2</sup> (4), Z<sub>3</sub>, Z<sub>2</sub> (9) | || Double cover of dihedral group. |- ! 69 ! G<sub>24</sub><sup>10</sup> | D<sub>8</sub> Γ Z<sub>3</sub> | Z<sub>12</sub>, Z<sub>6</sub> Γ Z<sub>2</sub> (2), D<sub>8</sub>, Z<sub>6</sub> (5), Z<sub>4</sub>, Z<sub>2</sub><sup>2</sup> (2), Z<sub>3</sub>, Z<sub>2</sub> (5) | || Product. Nilpotent. |- ! 70 ! G<sub>24</sub><sup>11</sup> | Q<sub>8</sub> Γ Z<sub>3</sub> | Z<sub>12</sub> (3), Q<sub>8</sub>, Z<sub>6</sub>, Z<sub>4</sub> (3), Z<sub>3</sub>, Z<sub>2</sub> | || Product. Nilpotent. |- ! 71 ! G<sub>24</sub><sup>12</sup> | S<sub>4</sub> | A<sub>4</sub>, D<sub>8</sub> (3), D<sub>6</sub> (4), Z<sub>4</sub> (3), Z<sub>2</sub><sup>2</sup> (4), Z<sub>3</sub> (4), Z<sub>2</sub> (9)<ref>{{Cite web|url=https://groupprops.subwiki.org/wiki/Subgroup_structure_of_symmetric_group:S4|title = Subgroup structure of symmetric group:S4 - Groupprops}}</ref> | [[File:Symmetric group 4; cycle graph.svg|40px]] || Symmetric group. Has no normal [[Sylow subgroup]]s. Chiral [[octahedral symmetry]] (O), Achiral [[tetrahedral symmetry]] (T<sub>d</sub>). |- ! 72 ! G<sub>24</sub><sup>13</sup> | A<sub>4</sub> Γ Z<sub>2</sub> | A<sub>4</sub>, Z<sub>2</sub><sup>3</sup>, Z<sub>6</sub> (4), Z<sub>2</sub><sup>2</sup> (7), Z<sub>3</sub> (4), Z<sub>2</sub> (7) | [[File:GroupDiagramMiniA4xC2.png|40px]] || Product. [[Pyritohedral symmetry]] (T<sub>h</sub>). |- ! 73 ! G<sub>24</sub><sup>14</sup> | D<sub>12</sub> Γ Z<sub>2</sub> | Z<sub>6</sub> Γ Z<sub>2</sub>, D<sub>12</sub> (6), Z<sub>2</sub><sup>3</sup> (3), Z<sub>6</sub> (3), D<sub>6</sub> (4), Z<sub>2</sub><sup>2</sup> (19), Z<sub>3</sub>, Z<sub>2</sub> (15) | || Product. |- ! 26 ! 77 ! G<sub>26</sub><sup>1</sup> | D<sub>26</sub> | Z<sub>13</sub>, Z<sub>2</sub> (13) | || Dihedral group, Dih<sub>13</sub>, Frobenius group. |- ! rowspan=2|27 ! 81 ! G<sub>27</sub><sup>3</sup> | Z<sub>3</sub><sup>2</sup> β Z<sub>3</sub> | Z<sub>3</sub><sup>2</sup> (4), Z<sub>3</sub> (13) | || All non-trivial elements have order 3. [[Extraspecial group]]. Nilpotent. |- ! 82 ! G<sub>27</sub><sup>4</sup> | Z<sub>9</sub> β Z<sub>3</sub> | Z<sub>9</sub> (3), Z<sub>3</sub><sup>2</sup>, Z<sub>3</sub> (4) | || [[Extraspecial group]]. Nilpotent. |- ! rowspan=2|28 ! 84 ! G<sub>28</sub><sup>1</sup> | Z<sub>7</sub> β Z<sub>4</sub> | Z<sub>14</sub>, Z<sub>7</sub>, Z<sub>4</sub> (7), Z<sub>2</sub> | || Dicyclic group Dic<sub>7</sub>, Binary dihedral group, <7,2,2>.<ref name=anglebracket/> |- ! 86 ! G<sub>28</sub><sup>3</sup> | D<sub>28</sub> = D<sub>14</sub> Γ Z<sub>2</sub> | Z<sub>14</sub>, D<sub>14</sub> (2), Z<sub>7</sub>, Z<sub>2</sub><sup>2</sup> (7), Z<sub>2</sub> (9) | || Dihedral group, Dih<sub>14</sub>, product. |- ! rowspan=3|30 ! 89 ! G<sub>30</sub><sup>1</sup> | D<sub>6</sub> Γ Z<sub>5</sub> | Z<sub>15</sub>, Z<sub>10</sub> (3), D<sub>6</sub>, Z<sub>5</sub>, Z<sub>3</sub>, Z<sub>2</sub> (3) | || Product. |- ! 90 ! G<sub>30</sub><sup>2</sup> | D<sub>10</sub> Γ Z<sub>3</sub> | Z<sub>15</sub>, D<sub>10</sub>, Z<sub>6</sub> (5), Z<sub>5</sub>, Z<sub>3</sub>, Z<sub>2</sub> (5) | || Product. |- ! 91 ! G<sub>30</sub><sup>3</sup> | D<sub>30</sub> | Z<sub>15</sub>, D<sub>10</sub> (3), D<sub>6</sub> (5), Z<sub>5</sub>, Z<sub>3</sub>, Z<sub>2</sub> (15) | || Dihedral group, Dih<sub>15</sub>, Frobenius group. |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
List of small groups
(section)
Add topic