Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Likelihood function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Continuous probability distribution=== Let <math display="inline">X</math> be a [[random variable]] following an [[Probability distribution#Continuous probability distribution|absolutely continuous probability distribution]] with [[probability density function|density function]] <math display="inline">f</math> (a function of <math display="inline">x</math>) which depends on a parameter <math display="inline">\theta</math>. Then the function <math display="block">\mathcal{L}(\theta \mid x) = f_\theta (x), </math> considered as a function of <math display="inline">\theta</math>, is the ''likelihood function'' (of <math display="inline">\theta</math>, given the [[Outcome (probability)|outcome]] <math display="inline">X=x</math>). Again, <math display="inline">\mathcal{L}</math> is not a probability density or mass function over <math display="inline">\theta</math>, despite being a function of <math display="inline">\theta</math> given the observation <math display="inline">X = x</math>. ====Relationship between the likelihood and probability density functions==== The use of the [[probability density function|probability density]] in specifying the likelihood function above is justified as follows. Given an observation <math display="inline">x_j</math>, the likelihood for the interval <math display="inline">[x_j, x_j + h]</math>, where <math display="inline">h > 0</math> is a constant, is given by <math display="inline"> \mathcal{L}(\theta\mid x \in [x_j, x_j + h]) </math>. Observe that <math display="block"> \mathop\operatorname{arg\,max}_\theta \mathcal{L}(\theta\mid x \in [x_j, x_j + h]) = \mathop\operatorname{arg\,max}_\theta \frac{1}{h} \mathcal{L}(\theta\mid x \in [x_j, x_j + h]) ,</math> since <math display="inline"> h </math> is positive and constant. Because <math display="block"> \mathop\operatorname{arg\,max}_\theta \frac 1 h \mathcal{L}(\theta\mid x \in [x_j, x_j + h]) = \mathop\operatorname{arg\,max}_\theta \frac 1 h \Pr(x_j \leq x \leq x_j + h \mid \theta) = \mathop\operatorname{arg\,max}_\theta \frac 1 h \int_{x_j}^{x_j+h} f(x\mid \theta) \,dx, </math> where <math display="inline"> f(x\mid \theta) </math> is the probability density function, it follows that <math display="block"> \mathop\operatorname{arg\,max}_\theta \mathcal{L}(\theta\mid x \in [x_j, x_j + h]) = \mathop\operatorname{arg\,max}_\theta \frac{1}{h} \int_{x_j}^{x_j+h} f(x\mid\theta) \,dx .</math> The first [[fundamental theorem of calculus]] provides that <math display="block"> \lim_{h \to 0^{+}} \frac 1 h \int_{x_j}^{x_j+h} f(x\mid\theta) \,dx = f(x_j \mid \theta). </math> Then <math display="block"> \begin{align} \mathop\operatorname{arg\,max}_\theta \mathcal{L}(\theta\mid x_j) &= \mathop\operatorname{arg\,max}_\theta \left[ \lim_{h\to 0^{+}} \mathcal{L}(\theta\mid x \in [x_j, x_j + h]) \right] \\[4pt] &= \mathop\operatorname{arg\,max}_\theta \left[ \lim_{h\to 0^{+}} \frac{1}{h} \int_{x_j}^{x_j+h} f(x\mid\theta) \,dx \right] \\[4pt] &= \mathop\operatorname{arg\,max}_\theta f(x_j \mid \theta). \end{align} </math> Therefore, <math display="block"> \mathop\operatorname{arg\,max}_\theta \mathcal{L}(\theta\mid x_j) = \mathop\operatorname{arg\,max}_\theta f(x_j \mid \theta), </math> and so maximizing the probability density at <math display="inline"> x_j </math> amounts to maximizing the likelihood of the specific observation <math display="inline"> x_j </math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Likelihood function
(section)
Add topic